Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891079225> ?p ?o ?g. }
- W2891079225 endingPage "1968" @default.
- W2891079225 startingPage "1968" @default.
- W2891079225 abstract "Despite advances in monitoring and modelling of intra-urban variation in multiple pollutants, few studies have attempted to separate spatial patterns by time of day, or incorporated organic tracers into spatial monitoring studies. Due to varying emissions sources from diesel and gasoline vehicular traffic, as well as within-day temporal variation in source mix and intensity (e.g., rush-hours vs. full-day measures), accurately assessing diesel-related air pollution within an urban core can be challenging. We allocated 24 sampling sites across downtown Pittsburgh, Pennsylvania (2.8 km2) to capture fine-scale variation in diesel-related pollutants, and to compare these patterns by sampling interval (i.e., “rush-hours” vs. “work-week” concentrations), and by season. Using geographic information system (GIS)-based methods, we allocated sampling sites to capture spatial variation in key traffic-related pollution sources (i.e., truck, bus, overall traffic densities). Programmable monitors were used to collect integrated work-week and rush-hour samples of fine particulate matter (PM2.5), black carbon (BC), trace elements, and diesel-related organics (polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes), in summer and winter 2014. Land use regression (LUR) models were created for PM2.5, BC, total elemental carbon (EC), total organic carbon (OC), elemental (Al, Ca, Fe), and organic constituents (total PAHs, total hopanes), and compared by sampling interval and season. We hypothesized higher pollution concentrations and greater spatial contrast in rush-hour, compared to full work-week samples, with variation by season and pollutant. Rush-hour sampling produced slightly higher total PM2.5 and BC concentrations in both seasons, compared to work-week sampling, but no evident difference in spatial patterns. We also found substantial spatial variability in most trace elements and organic compounds, with comparable spatial patterns using both sampling paradigms. Overall, we found higher concentrations of traffic-related trace elements and organic compounds in rush-hour samples, and higher concentrations of coal-related elements (e.g., As, Se) in work-week samples. Mean bus density was the strongest LUR predictor in most models, in both seasons, under each sampling paradigm. Within each season and constituent, the bus-related terms explained similar proportions of variance in the rush-hour and work-week samples. Rush-hour and work-week LUR models explained similar proportions of spatial variation in pollutants, suggesting that the majority of emissions may be produced during rush-hour traffic across downtown. Results suggest that rush-hour emissions may predominantly shape overall spatial variance in diesel-related pollutants." @default.
- W2891079225 created "2018-09-27" @default.
- W2891079225 creator A5003197385 @default.
- W2891079225 creator A5063641775 @default.
- W2891079225 creator A5064552667 @default.
- W2891079225 creator A5071932269 @default.
- W2891079225 creator A5076029957 @default.
- W2891079225 creator A5079797574 @default.
- W2891079225 creator A5087096286 @default.
- W2891079225 creator A5090003037 @default.
- W2891079225 date "2018-09-10" @default.
- W2891079225 modified "2023-10-03" @default.
- W2891079225 title "Spatial Patterns in Rush-Hour vs. Work-Week Diesel-Related Pollution across a Downtown Core" @default.
- W2891079225 cites W1844527004 @default.
- W2891079225 cites W1973058060 @default.
- W2891079225 cites W1983393788 @default.
- W2891079225 cites W1986757612 @default.
- W2891079225 cites W1988555557 @default.
- W2891079225 cites W1996718275 @default.
- W2891079225 cites W2008192079 @default.
- W2891079225 cites W2017325484 @default.
- W2891079225 cites W2025986482 @default.
- W2891079225 cites W2029894043 @default.
- W2891079225 cites W2031032649 @default.
- W2891079225 cites W2038854030 @default.
- W2891079225 cites W2052436262 @default.
- W2891079225 cites W2065947772 @default.
- W2891079225 cites W2072457499 @default.
- W2891079225 cites W2091020019 @default.
- W2891079225 cites W2098637521 @default.
- W2891079225 cites W2124919177 @default.
- W2891079225 cites W2131808303 @default.
- W2891079225 cites W2132413744 @default.
- W2891079225 cites W2136915828 @default.
- W2891079225 cites W2158095312 @default.
- W2891079225 cites W2162047162 @default.
- W2891079225 cites W2184736904 @default.
- W2891079225 cites W2256161737 @default.
- W2891079225 cites W2317673623 @default.
- W2891079225 cites W2510455935 @default.
- W2891079225 cites W2552141447 @default.
- W2891079225 cites W2592926323 @default.
- W2891079225 cites W2911561790 @default.
- W2891079225 doi "https://doi.org/10.3390/ijerph15091968" @default.
- W2891079225 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6164514" @default.
- W2891079225 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30201856" @default.
- W2891079225 hasPublicationYear "2018" @default.
- W2891079225 type Work @default.
- W2891079225 sameAs 2891079225 @default.
- W2891079225 citedByCount "7" @default.
- W2891079225 countsByYear W28910792252018 @default.
- W2891079225 countsByYear W28910792252019 @default.
- W2891079225 countsByYear W28910792252022 @default.
- W2891079225 countsByYear W28910792252023 @default.
- W2891079225 crossrefType "journal-article" @default.
- W2891079225 hasAuthorship W2891079225A5003197385 @default.
- W2891079225 hasAuthorship W2891079225A5063641775 @default.
- W2891079225 hasAuthorship W2891079225A5064552667 @default.
- W2891079225 hasAuthorship W2891079225A5071932269 @default.
- W2891079225 hasAuthorship W2891079225A5076029957 @default.
- W2891079225 hasAuthorship W2891079225A5079797574 @default.
- W2891079225 hasAuthorship W2891079225A5087096286 @default.
- W2891079225 hasAuthorship W2891079225A5090003037 @default.
- W2891079225 hasBestOaLocation W28910792251 @default.
- W2891079225 hasConcept C105795698 @default.
- W2891079225 hasConcept C106131492 @default.
- W2891079225 hasConcept C107872376 @default.
- W2891079225 hasConcept C119599485 @default.
- W2891079225 hasConcept C127413603 @default.
- W2891079225 hasConcept C138171918 @default.
- W2891079225 hasConcept C140779682 @default.
- W2891079225 hasConcept C178790620 @default.
- W2891079225 hasConcept C185592680 @default.
- W2891079225 hasConcept C18903297 @default.
- W2891079225 hasConcept C24245907 @default.
- W2891079225 hasConcept C33923547 @default.
- W2891079225 hasConcept C39432304 @default.
- W2891079225 hasConcept C521259446 @default.
- W2891079225 hasConcept C548081761 @default.
- W2891079225 hasConcept C559116025 @default.
- W2891079225 hasConcept C82685317 @default.
- W2891079225 hasConcept C86803240 @default.
- W2891079225 hasConcept C87717796 @default.
- W2891079225 hasConcept C94747663 @default.
- W2891079225 hasConceptScore W2891079225C105795698 @default.
- W2891079225 hasConceptScore W2891079225C106131492 @default.
- W2891079225 hasConceptScore W2891079225C107872376 @default.
- W2891079225 hasConceptScore W2891079225C119599485 @default.
- W2891079225 hasConceptScore W2891079225C127413603 @default.
- W2891079225 hasConceptScore W2891079225C138171918 @default.
- W2891079225 hasConceptScore W2891079225C140779682 @default.
- W2891079225 hasConceptScore W2891079225C178790620 @default.
- W2891079225 hasConceptScore W2891079225C185592680 @default.
- W2891079225 hasConceptScore W2891079225C18903297 @default.
- W2891079225 hasConceptScore W2891079225C24245907 @default.
- W2891079225 hasConceptScore W2891079225C33923547 @default.
- W2891079225 hasConceptScore W2891079225C39432304 @default.
- W2891079225 hasConceptScore W2891079225C521259446 @default.