Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891083911> ?p ?o ?g. }
- W2891083911 abstract "Multiple layers of genetic and epigenetic variability are being simultaneously explored in an increasing number of health studies. We summarize here different approaches applied in the Data Mining and Machine Learning group at the GAW20 to integrate genome-wide genotype and methylation array data. We provide a non-intimidating introduction to some frequently used methods to investigate high-dimensional molecular data and compare the different approaches tried by group members: random forest, deep learning, cluster analysis, mixed models, and gene-set enrichment analysis. Group contributions were quite heterogeneous regarding investigated data sets (real vs simulated), conducted data quality control and assessed phenotypes (eg, metabolic syndrome vs relative differences of log-transformed triglyceride concentrations before and after fenofibrate treatment). However, some common technical issues were detected, leading to practical recommendations. Different sources of correlation were identified by group members, including population stratification, family structure, batch effects, linkage disequilibrium and correlation of methylation values at neighboring cytosine-phosphate-guanine (CpG) sites, and the majority of applied approaches were able to take into account identified correlation structures. The ability to efficiently deal with high-dimensional omics data, and the model free nature of the approaches that did not require detailed model specifications were clearly recognized as the main strengths of applied methods. A limitation of random forest is its sensitivity to highly correlated variables. The parameter setup and the interpretation of results from deep learning methods, in particular deep neural networks, can be extremely challenging. Cluster analysis and mixed models may need some predimension reduction based on existing literature, data filtering, and supplementary statistical methods, and gene-set enrichment analysis requires biological insight." @default.
- W2891083911 created "2018-09-27" @default.
- W2891083911 creator A5024018042 @default.
- W2891083911 creator A5045713654 @default.
- W2891083911 creator A5064882006 @default.
- W2891083911 creator A5087826705 @default.
- W2891083911 date "2018-09-01" @default.
- W2891083911 modified "2023-10-08" @default.
- W2891083911 title "Data mining and machine learning approaches for the integration of genome-wide association and methylation data: methodology and main conclusions from GAW20" @default.
- W2891083911 cites W1964940342 @default.
- W2891083911 cites W2069167972 @default.
- W2891083911 cites W2161444669 @default.
- W2891083911 cites W2169281690 @default.
- W2891083911 cites W2418706671 @default.
- W2891083911 cites W2583025663 @default.
- W2891083911 cites W2890154903 @default.
- W2891083911 cites W2890556325 @default.
- W2891083911 cites W2890716356 @default.
- W2891083911 cites W2891385203 @default.
- W2891083911 cites W2911964244 @default.
- W2891083911 cites W2919115771 @default.
- W2891083911 doi "https://doi.org/10.1186/s12863-018-0646-3" @default.
- W2891083911 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6157271" @default.
- W2891083911 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30255774" @default.
- W2891083911 hasPublicationYear "2018" @default.
- W2891083911 type Work @default.
- W2891083911 sameAs 2891083911 @default.
- W2891083911 citedByCount "2" @default.
- W2891083911 countsByYear W28910839112020 @default.
- W2891083911 countsByYear W28910839112023 @default.
- W2891083911 crossrefType "journal-article" @default.
- W2891083911 hasAuthorship W2891083911A5024018042 @default.
- W2891083911 hasAuthorship W2891083911A5045713654 @default.
- W2891083911 hasAuthorship W2891083911A5064882006 @default.
- W2891083911 hasAuthorship W2891083911A5087826705 @default.
- W2891083911 hasBestOaLocation W28910839111 @default.
- W2891083911 hasConcept C104317684 @default.
- W2891083911 hasConcept C117220453 @default.
- W2891083911 hasConcept C119857082 @default.
- W2891083911 hasConcept C124101348 @default.
- W2891083911 hasConcept C135763542 @default.
- W2891083911 hasConcept C144024400 @default.
- W2891083911 hasConcept C149923435 @default.
- W2891083911 hasConcept C150194340 @default.
- W2891083911 hasConcept C153209595 @default.
- W2891083911 hasConcept C154945302 @default.
- W2891083911 hasConcept C166976648 @default.
- W2891083911 hasConcept C169258074 @default.
- W2891083911 hasConcept C190727270 @default.
- W2891083911 hasConcept C2524010 @default.
- W2891083911 hasConcept C2908647359 @default.
- W2891083911 hasConcept C33923547 @default.
- W2891083911 hasConcept C35605836 @default.
- W2891083911 hasConcept C41008148 @default.
- W2891083911 hasConcept C54355233 @default.
- W2891083911 hasConcept C70721500 @default.
- W2891083911 hasConcept C86803240 @default.
- W2891083911 hasConceptScore W2891083911C104317684 @default.
- W2891083911 hasConceptScore W2891083911C117220453 @default.
- W2891083911 hasConceptScore W2891083911C119857082 @default.
- W2891083911 hasConceptScore W2891083911C124101348 @default.
- W2891083911 hasConceptScore W2891083911C135763542 @default.
- W2891083911 hasConceptScore W2891083911C144024400 @default.
- W2891083911 hasConceptScore W2891083911C149923435 @default.
- W2891083911 hasConceptScore W2891083911C150194340 @default.
- W2891083911 hasConceptScore W2891083911C153209595 @default.
- W2891083911 hasConceptScore W2891083911C154945302 @default.
- W2891083911 hasConceptScore W2891083911C166976648 @default.
- W2891083911 hasConceptScore W2891083911C169258074 @default.
- W2891083911 hasConceptScore W2891083911C190727270 @default.
- W2891083911 hasConceptScore W2891083911C2524010 @default.
- W2891083911 hasConceptScore W2891083911C2908647359 @default.
- W2891083911 hasConceptScore W2891083911C33923547 @default.
- W2891083911 hasConceptScore W2891083911C35605836 @default.
- W2891083911 hasConceptScore W2891083911C41008148 @default.
- W2891083911 hasConceptScore W2891083911C54355233 @default.
- W2891083911 hasConceptScore W2891083911C70721500 @default.
- W2891083911 hasConceptScore W2891083911C86803240 @default.
- W2891083911 hasIssue "S1" @default.
- W2891083911 hasLocation W28910839111 @default.
- W2891083911 hasLocation W28910839112 @default.
- W2891083911 hasLocation W28910839113 @default.
- W2891083911 hasLocation W28910839114 @default.
- W2891083911 hasLocation W28910839115 @default.
- W2891083911 hasLocation W28910839116 @default.
- W2891083911 hasLocation W28910839117 @default.
- W2891083911 hasOpenAccess W2891083911 @default.
- W2891083911 hasPrimaryLocation W28910839111 @default.
- W2891083911 hasRelatedWork W2911455822 @default.
- W2891083911 hasRelatedWork W3018959556 @default.
- W2891083911 hasRelatedWork W3174196512 @default.
- W2891083911 hasRelatedWork W3211546796 @default.
- W2891083911 hasRelatedWork W4281560664 @default.
- W2891083911 hasRelatedWork W4281616679 @default.
- W2891083911 hasRelatedWork W4293525103 @default.
- W2891083911 hasRelatedWork W4308191010 @default.
- W2891083911 hasRelatedWork W4318350883 @default.
- W2891083911 hasRelatedWork W4323021782 @default.
- W2891083911 hasVolume "19" @default.
- W2891083911 isParatext "false" @default.