Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891089320> ?p ?o ?g. }
- W2891089320 abstract "Measuring domain relevance of data and identifying or selecting well-fit domain data for machine translation (MT) is a well-studied topic, but denoising is not yet. Denoising is concerned with a different type of data quality and tries to reduce the negative impact of data noise on MT training, in particular, neural MT (NMT) training. This paper generalizes methods for measuring and selecting data for domain MT and applies them to denoising NMT training. The proposed approach uses trusted data and a denoising curriculum realized by online data selection. Intrinsic and extrinsic evaluations of the approach show its significant effectiveness for NMT to train on data with severe noise." @default.
- W2891089320 created "2018-09-27" @default.
- W2891089320 creator A5017286053 @default.
- W2891089320 creator A5046597133 @default.
- W2891089320 creator A5067705729 @default.
- W2891089320 creator A5068010225 @default.
- W2891089320 creator A5081626471 @default.
- W2891089320 date "2018-08-31" @default.
- W2891089320 modified "2023-09-28" @default.
- W2891089320 title "Denoising Neural Machine Translation Training with Trusted Data and Online Data Selection" @default.
- W2891089320 cites W2113290770 @default.
- W2891089320 cites W2115410424 @default.
- W2891089320 cites W2117278770 @default.
- W2891089320 cites W2132984949 @default.
- W2891089320 cites W2296073425 @default.
- W2891089320 cites W2515631395 @default.
- W2891089320 cites W2525778437 @default.
- W2891089320 cites W2613904329 @default.
- W2891089320 cites W2626778328 @default.
- W2891089320 cites W2743320544 @default.
- W2891089320 cites W2750588180 @default.
- W2891089320 cites W2756978580 @default.
- W2891089320 cites W2760452458 @default.
- W2891089320 cites W2765961751 @default.
- W2891089320 cites W2896060389 @default.
- W2891089320 cites W2903158431 @default.
- W2891089320 cites W2963532001 @default.
- W2891089320 cites W2963919854 @default.
- W2891089320 cites W2964022663 @default.
- W2891089320 doi "https://doi.org/10.48550/arxiv.1809.00068" @default.
- W2891089320 hasPublicationYear "2018" @default.
- W2891089320 type Work @default.
- W2891089320 sameAs 2891089320 @default.
- W2891089320 citedByCount "6" @default.
- W2891089320 countsByYear W28910893202018 @default.
- W2891089320 countsByYear W28910893202019 @default.
- W2891089320 countsByYear W28910893202020 @default.
- W2891089320 countsByYear W28910893202021 @default.
- W2891089320 crossrefType "posted-content" @default.
- W2891089320 hasAuthorship W2891089320A5017286053 @default.
- W2891089320 hasAuthorship W2891089320A5046597133 @default.
- W2891089320 hasAuthorship W2891089320A5067705729 @default.
- W2891089320 hasAuthorship W2891089320A5068010225 @default.
- W2891089320 hasAuthorship W2891089320A5081626471 @default.
- W2891089320 hasBestOaLocation W28910893201 @default.
- W2891089320 hasConcept C104317684 @default.
- W2891089320 hasConcept C105580179 @default.
- W2891089320 hasConcept C111472728 @default.
- W2891089320 hasConcept C115961682 @default.
- W2891089320 hasConcept C119857082 @default.
- W2891089320 hasConcept C121332964 @default.
- W2891089320 hasConcept C124101348 @default.
- W2891089320 hasConcept C127413603 @default.
- W2891089320 hasConcept C134306372 @default.
- W2891089320 hasConcept C138885662 @default.
- W2891089320 hasConcept C149364088 @default.
- W2891089320 hasConcept C153180895 @default.
- W2891089320 hasConcept C153294291 @default.
- W2891089320 hasConcept C154945302 @default.
- W2891089320 hasConcept C158154518 @default.
- W2891089320 hasConcept C163294075 @default.
- W2891089320 hasConcept C176217482 @default.
- W2891089320 hasConcept C17744445 @default.
- W2891089320 hasConcept C185592680 @default.
- W2891089320 hasConcept C199539241 @default.
- W2891089320 hasConcept C203005215 @default.
- W2891089320 hasConcept C21547014 @default.
- W2891089320 hasConcept C24756922 @default.
- W2891089320 hasConcept C2777211547 @default.
- W2891089320 hasConcept C2779530757 @default.
- W2891089320 hasConcept C2781170535 @default.
- W2891089320 hasConcept C33923547 @default.
- W2891089320 hasConcept C36503486 @default.
- W2891089320 hasConcept C41008148 @default.
- W2891089320 hasConcept C50644808 @default.
- W2891089320 hasConcept C51632099 @default.
- W2891089320 hasConcept C55493867 @default.
- W2891089320 hasConcept C81917197 @default.
- W2891089320 hasConcept C99498987 @default.
- W2891089320 hasConceptScore W2891089320C104317684 @default.
- W2891089320 hasConceptScore W2891089320C105580179 @default.
- W2891089320 hasConceptScore W2891089320C111472728 @default.
- W2891089320 hasConceptScore W2891089320C115961682 @default.
- W2891089320 hasConceptScore W2891089320C119857082 @default.
- W2891089320 hasConceptScore W2891089320C121332964 @default.
- W2891089320 hasConceptScore W2891089320C124101348 @default.
- W2891089320 hasConceptScore W2891089320C127413603 @default.
- W2891089320 hasConceptScore W2891089320C134306372 @default.
- W2891089320 hasConceptScore W2891089320C138885662 @default.
- W2891089320 hasConceptScore W2891089320C149364088 @default.
- W2891089320 hasConceptScore W2891089320C153180895 @default.
- W2891089320 hasConceptScore W2891089320C153294291 @default.
- W2891089320 hasConceptScore W2891089320C154945302 @default.
- W2891089320 hasConceptScore W2891089320C158154518 @default.
- W2891089320 hasConceptScore W2891089320C163294075 @default.
- W2891089320 hasConceptScore W2891089320C176217482 @default.
- W2891089320 hasConceptScore W2891089320C17744445 @default.
- W2891089320 hasConceptScore W2891089320C185592680 @default.
- W2891089320 hasConceptScore W2891089320C199539241 @default.
- W2891089320 hasConceptScore W2891089320C203005215 @default.