Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891101540> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W2891101540 endingPage "179" @default.
- W2891101540 startingPage "177" @default.
- W2891101540 abstract "espanolLas caracteristicas de calidad de los productos carnicos han sido tradicionalmente analizadas por metodos tediosos que ademas de consumir tiempo y reactivos quimicos, son procesos destructivos. Como alternativa, la imagen de resonancia magnetica (MRI) y los algoritmos de vision por computador han sido propuestos para analizar MRI. Actualmente, hay un creciente interes en el uso de las tecnicas fractales en lugar de los algoritmos clasicos de texturas para analizar imagenes. En este estudio, tres algoritmos diferentes (GLCM, CFA y FTA) son comparados, FTA y GLCM lograron correlaciones entre muy buenas y excelentes. Los resultados de este estudio podrian validar el uso de FTA para analizar MRI con el fin de predecir caracteristicas del lomo. EnglishQuality traits of meat products have been traditionally analyzed by tedious methods, which are also time and solvent consuming, and destructive processes. As an alternative, MRI and computer vision algorithms for MRI analysis have been proposed. Currently, there is a growing interest in the use of fractal techniques instead of texture classic algorithms for image analysis. In this work, three different algorithms (GLCM, CFA and FTA) are compared. FTA and GLCM achieved very good to excellent correlations. The result of this study could validate the use of FTA for MRI analysis in order to predict traits of loins." @default.
- W2891101540 created "2018-09-27" @default.
- W2891101540 creator A5006004734 @default.
- W2891101540 creator A5042221230 @default.
- W2891101540 creator A5067658290 @default.
- W2891101540 creator A5074112387 @default.
- W2891101540 date "2018-01-01" @default.
- W2891101540 modified "2023-09-24" @default.
- W2891101540 title "Non-destructive analysis of loin by Magnetic Resonance Imaging and fractals" @default.
- W2891101540 cites W2020751131 @default.
- W2891101540 cites W2044465660 @default.
- W2891101540 cites W2050871501 @default.
- W2891101540 cites W2073008576 @default.
- W2891101540 cites W2078206416 @default.
- W2891101540 cites W2229155312 @default.
- W2891101540 cites W2554148458 @default.
- W2891101540 hasPublicationYear "2018" @default.
- W2891101540 type Work @default.
- W2891101540 sameAs 2891101540 @default.
- W2891101540 citedByCount "0" @default.
- W2891101540 crossrefType "journal-article" @default.
- W2891101540 hasAuthorship W2891101540A5006004734 @default.
- W2891101540 hasAuthorship W2891101540A5042221230 @default.
- W2891101540 hasAuthorship W2891101540A5067658290 @default.
- W2891101540 hasAuthorship W2891101540A5074112387 @default.
- W2891101540 hasConcept C142362112 @default.
- W2891101540 hasConcept C154945302 @default.
- W2891101540 hasConcept C15708023 @default.
- W2891101540 hasConcept C205649164 @default.
- W2891101540 hasConcept C41008148 @default.
- W2891101540 hasConcept C58640448 @default.
- W2891101540 hasConceptScore W2891101540C142362112 @default.
- W2891101540 hasConceptScore W2891101540C154945302 @default.
- W2891101540 hasConceptScore W2891101540C15708023 @default.
- W2891101540 hasConceptScore W2891101540C205649164 @default.
- W2891101540 hasConceptScore W2891101540C41008148 @default.
- W2891101540 hasConceptScore W2891101540C58640448 @default.
- W2891101540 hasIssue "1" @default.
- W2891101540 hasLocation W28911015401 @default.
- W2891101540 hasOpenAccess W2891101540 @default.
- W2891101540 hasPrimaryLocation W28911015401 @default.
- W2891101540 isParatext "false" @default.
- W2891101540 isRetracted "false" @default.
- W2891101540 magId "2891101540" @default.
- W2891101540 workType "article" @default.