Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891114629> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2891114629 endingPage "1677" @default.
- W2891114629 startingPage "1669" @default.
- W2891114629 abstract "N6-methyladenosine (m6A) is a prevalent RNA methylation modification involved in several biological processes. Hundreds or thousands of m6A sites identified from different species using high-throughput experiments provides a rich resource to construct in-silico approaches for identifying m6A sites. The existing m6A predictors are developed using conventional machine-learning (ML) algorithms and most are species-centric. In this paper, we develop a novel cross-species deep-learning classifier based on bidirectional Gated Recurrent Unit (BGRU) for the prediction of m6A sites. In comparison with conventional ML approaches, BGRU achieves outstanding performance for the Mammalia dataset that contains over fifty thousand m6A sites but inferior for the Saccharomyces cerevisiae dataset that covers around a thousand positives. The accuracy of BGRU is sensitive to the data size and the sensitivity is compensated by the integration of a random forest classifier with a novel encoding of enhanced nucleic acid content. The integrated approach dubbed as BGRU-based Ensemble RNA Methylation site Predictor (BERMP) has competitive performance in both cross-validation test and independent test. BERMP also outperforms existing m6A predictors for different species. Therefore, BERMP is a novel multi-species tool for identifying m6A sites with high confidence. This classifier is freely available at http://www.bioinfogo.org/bermp." @default.
- W2891114629 created "2018-09-27" @default.
- W2891114629 creator A5018175876 @default.
- W2891114629 creator A5051619048 @default.
- W2891114629 creator A5064386450 @default.
- W2891114629 creator A5083260777 @default.
- W2891114629 creator A5085609481 @default.
- W2891114629 date "2018-01-01" @default.
- W2891114629 modified "2023-10-11" @default.
- W2891114629 title "BERMP: a cross-species classifier for predicting m<sup>6</sup>A sites by integrating a deep learning algorithm and a random forest approach" @default.
- W2891114629 cites W1186776093 @default.
- W2891114629 cites W1676583788 @default.
- W2891114629 cites W1986988560 @default.
- W2891114629 cites W1998402534 @default.
- W2891114629 cites W2034286722 @default.
- W2891114629 cites W2054101905 @default.
- W2891114629 cites W2062821957 @default.
- W2891114629 cites W2065847836 @default.
- W2891114629 cites W2078964320 @default.
- W2891114629 cites W2104706770 @default.
- W2891114629 cites W2144015117 @default.
- W2891114629 cites W2205505631 @default.
- W2891114629 cites W2213040759 @default.
- W2891114629 cites W2261527505 @default.
- W2891114629 cites W2287984595 @default.
- W2891114629 cites W2461096072 @default.
- W2891114629 cites W2511229982 @default.
- W2891114629 cites W2607268717 @default.
- W2891114629 cites W2609814551 @default.
- W2891114629 cites W2742750032 @default.
- W2891114629 cites W2783279948 @default.
- W2891114629 cites W2915489297 @default.
- W2891114629 doi "https://doi.org/10.7150/ijbs.27819" @default.
- W2891114629 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6216033" @default.
- W2891114629 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30416381" @default.
- W2891114629 hasPublicationYear "2018" @default.
- W2891114629 type Work @default.
- W2891114629 sameAs 2891114629 @default.
- W2891114629 citedByCount "80" @default.
- W2891114629 countsByYear W28911146292019 @default.
- W2891114629 countsByYear W28911146292020 @default.
- W2891114629 countsByYear W28911146292021 @default.
- W2891114629 countsByYear W28911146292022 @default.
- W2891114629 countsByYear W28911146292023 @default.
- W2891114629 crossrefType "journal-article" @default.
- W2891114629 hasAuthorship W2891114629A5018175876 @default.
- W2891114629 hasAuthorship W2891114629A5051619048 @default.
- W2891114629 hasAuthorship W2891114629A5064386450 @default.
- W2891114629 hasAuthorship W2891114629A5083260777 @default.
- W2891114629 hasAuthorship W2891114629A5085609481 @default.
- W2891114629 hasBestOaLocation W28911146291 @default.
- W2891114629 hasConcept C11413529 @default.
- W2891114629 hasConcept C119857082 @default.
- W2891114629 hasConcept C153180895 @default.
- W2891114629 hasConcept C154945302 @default.
- W2891114629 hasConcept C169258074 @default.
- W2891114629 hasConcept C41008148 @default.
- W2891114629 hasConcept C95623464 @default.
- W2891114629 hasConceptScore W2891114629C11413529 @default.
- W2891114629 hasConceptScore W2891114629C119857082 @default.
- W2891114629 hasConceptScore W2891114629C153180895 @default.
- W2891114629 hasConceptScore W2891114629C154945302 @default.
- W2891114629 hasConceptScore W2891114629C169258074 @default.
- W2891114629 hasConceptScore W2891114629C41008148 @default.
- W2891114629 hasConceptScore W2891114629C95623464 @default.
- W2891114629 hasIssue "12" @default.
- W2891114629 hasLocation W28911146291 @default.
- W2891114629 hasLocation W28911146292 @default.
- W2891114629 hasLocation W28911146293 @default.
- W2891114629 hasOpenAccess W2891114629 @default.
- W2891114629 hasPrimaryLocation W28911146291 @default.
- W2891114629 hasRelatedWork W1546989560 @default.
- W2891114629 hasRelatedWork W1924178503 @default.
- W2891114629 hasRelatedWork W2049864679 @default.
- W2891114629 hasRelatedWork W2051487156 @default.
- W2891114629 hasRelatedWork W2073681303 @default.
- W2891114629 hasRelatedWork W2889302474 @default.
- W2891114629 hasRelatedWork W3171520305 @default.
- W2891114629 hasRelatedWork W3193043704 @default.
- W2891114629 hasRelatedWork W4308716060 @default.
- W2891114629 hasRelatedWork W4386259002 @default.
- W2891114629 hasVolume "14" @default.
- W2891114629 isParatext "false" @default.
- W2891114629 isRetracted "false" @default.
- W2891114629 magId "2891114629" @default.
- W2891114629 workType "article" @default.