Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891133414> ?p ?o ?g. }
- W2891133414 endingPage "536" @default.
- W2891133414 startingPage "510" @default.
- W2891133414 abstract "In this paper, we study the Helmholtz equation by the method of fundamental solutions (MFS) using Bessel and Neumann functions. The bounds of errors are derived for bounded simply-connected domains, while the bounds of condition number are derived only for disk domains. The MFS using Bessel functions is more efficient than the MFS using Neumann functions. Note that by using Bessel functions, the radius R of the source nodes is not necessarily to be larger than the maximal radius rmax of the solution domain. This is against the well-known rule: rmax<R for the MFS. Numerical experiments are carried out, to support the analysis and conclusions made. This is the first novelty in this paper. The error analysis for the Helmholtz equation is more complicated than that for the modified Helmholtz equation in [35], since the Bessel functions Jn(x) have infinite zeros. We consider the curial and degenerate cases when Jn(kR)≈0 and Jn(kρ)≈0. There exist few reports for the analysis for such a degeneracy (e.g., Li [21]). The error bounds are also explored for bounded simply-connected domains. The second novelty of this paper is for the analysis of the MFS in degeneracy. For the MFS using Neumann functions, the rule of the MFS, rmax<R, must obey. This paper is the first time to discover that the MFS using Bessel and Neumann functions suffer from the spurious eigenvalues. The spurious eigenvalues are not the true eigenvalues of the corresponding eigenvalue problems, but the correct solutions can not be obtained due to either algorithm singularity or divergence of numerical solutions. For the method of particular solutions (MPS) in [26], however, the source nodes disappear. In this paper, we will briefly provide the analysis of the MFS using Neumann functions, and the polynomial convergence can be achieved for bounded simple-connected domains. The analysis of the MFS using Neumann functions and numerical comparisons for different methods are the third contribution in this paper." @default.
- W2891133414 created "2018-09-27" @default.
- W2891133414 creator A5009406942 @default.
- W2891133414 creator A5031859692 @default.
- W2891133414 creator A5035820484 @default.
- W2891133414 creator A5060363546 @default.
- W2891133414 date "2019-01-01" @default.
- W2891133414 modified "2023-10-17" @default.
- W2891133414 title "The method of fundamental solutions for the Helmholtz equation" @default.
- W2891133414 cites W1982018344 @default.
- W2891133414 cites W1987931220 @default.
- W2891133414 cites W1992253001 @default.
- W2891133414 cites W2005273290 @default.
- W2891133414 cites W2010245220 @default.
- W2891133414 cites W2038690809 @default.
- W2891133414 cites W2047897749 @default.
- W2891133414 cites W2050035804 @default.
- W2891133414 cites W2054304632 @default.
- W2891133414 cites W2055962168 @default.
- W2891133414 cites W2062486712 @default.
- W2891133414 cites W2066549325 @default.
- W2891133414 cites W2076103001 @default.
- W2891133414 cites W2081900403 @default.
- W2891133414 cites W2084398830 @default.
- W2891133414 cites W2085587298 @default.
- W2891133414 cites W2091525178 @default.
- W2891133414 cites W2105730973 @default.
- W2891133414 cites W2140099577 @default.
- W2891133414 cites W2161770936 @default.
- W2891133414 cites W2589465446 @default.
- W2891133414 cites W2607491808 @default.
- W2891133414 cites W4255620270 @default.
- W2891133414 cites W2099397409 @default.
- W2891133414 doi "https://doi.org/10.1016/j.apnum.2018.09.008" @default.
- W2891133414 hasPublicationYear "2019" @default.
- W2891133414 type Work @default.
- W2891133414 sameAs 2891133414 @default.
- W2891133414 citedByCount "17" @default.
- W2891133414 countsByYear W28911334142019 @default.
- W2891133414 countsByYear W28911334142020 @default.
- W2891133414 countsByYear W28911334142021 @default.
- W2891133414 countsByYear W28911334142022 @default.
- W2891133414 countsByYear W28911334142023 @default.
- W2891133414 crossrefType "journal-article" @default.
- W2891133414 hasAuthorship W2891133414A5009406942 @default.
- W2891133414 hasAuthorship W2891133414A5031859692 @default.
- W2891133414 hasAuthorship W2891133414A5035820484 @default.
- W2891133414 hasAuthorship W2891133414A5060363546 @default.
- W2891133414 hasConcept C10628310 @default.
- W2891133414 hasConcept C107706756 @default.
- W2891133414 hasConcept C121332964 @default.
- W2891133414 hasConcept C125065441 @default.
- W2891133414 hasConcept C134306372 @default.
- W2891133414 hasConcept C158693339 @default.
- W2891133414 hasConcept C163681178 @default.
- W2891133414 hasConcept C182310444 @default.
- W2891133414 hasConcept C18591234 @default.
- W2891133414 hasConcept C21736991 @default.
- W2891133414 hasConcept C2777727622 @default.
- W2891133414 hasConcept C33923547 @default.
- W2891133414 hasConcept C34388435 @default.
- W2891133414 hasConcept C60644358 @default.
- W2891133414 hasConcept C62520636 @default.
- W2891133414 hasConcept C78540521 @default.
- W2891133414 hasConcept C86803240 @default.
- W2891133414 hasConceptScore W2891133414C10628310 @default.
- W2891133414 hasConceptScore W2891133414C107706756 @default.
- W2891133414 hasConceptScore W2891133414C121332964 @default.
- W2891133414 hasConceptScore W2891133414C125065441 @default.
- W2891133414 hasConceptScore W2891133414C134306372 @default.
- W2891133414 hasConceptScore W2891133414C158693339 @default.
- W2891133414 hasConceptScore W2891133414C163681178 @default.
- W2891133414 hasConceptScore W2891133414C182310444 @default.
- W2891133414 hasConceptScore W2891133414C18591234 @default.
- W2891133414 hasConceptScore W2891133414C21736991 @default.
- W2891133414 hasConceptScore W2891133414C2777727622 @default.
- W2891133414 hasConceptScore W2891133414C33923547 @default.
- W2891133414 hasConceptScore W2891133414C34388435 @default.
- W2891133414 hasConceptScore W2891133414C60644358 @default.
- W2891133414 hasConceptScore W2891133414C62520636 @default.
- W2891133414 hasConceptScore W2891133414C78540521 @default.
- W2891133414 hasConceptScore W2891133414C86803240 @default.
- W2891133414 hasFunder F4320321001 @default.
- W2891133414 hasFunder F4320322795 @default.
- W2891133414 hasLocation W28911334141 @default.
- W2891133414 hasOpenAccess W2891133414 @default.
- W2891133414 hasPrimaryLocation W28911334141 @default.
- W2891133414 hasRelatedWork W2011121568 @default.
- W2891133414 hasRelatedWork W2016940967 @default.
- W2891133414 hasRelatedWork W2073673068 @default.
- W2891133414 hasRelatedWork W2506296488 @default.
- W2891133414 hasRelatedWork W3021068127 @default.
- W2891133414 hasRelatedWork W4205547735 @default.
- W2891133414 hasRelatedWork W4236729297 @default.
- W2891133414 hasRelatedWork W4253268927 @default.
- W2891133414 hasRelatedWork W87087735 @default.
- W2891133414 hasRelatedWork W2171779193 @default.
- W2891133414 hasVolume "135" @default.