Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891134433> ?p ?o ?g. }
- W2891134433 endingPage "254" @default.
- W2891134433 startingPage "240" @default.
- W2891134433 abstract "The recent proliferation of tight or unconventional petroleum bearing reservoirs as an energy resource enables a more detailed investigation of the geochemical behaviour of these systems. In addition, it provides an opportunity to improve our understanding of low-permeability crustal fluid systems at depth. Organic-rich shales are not only the source-rocks in conventional petroleum systems, but potential seals, which may be important for the trapping and storage of CO2 and/or nuclear waste. The use of noble gas isotopes as tracers of fluid provenance and physical exchange processes is well established in other crustal fluid systems. Noble gas concentrations and isotopic characteristics were determined in 10 natural gas samples produced from the Eagle Ford shale, Texas, along with the concentration and δ13C and δD of hydrocarbon gases. By sampling gases produced directly from unconventional reservoirs we are able to determine their residence time and the extent of interaction of these fluids with other fluids in the wider hydrogeological system. The large range in thermal maturity exhibited across the basin, as demonstrated by the range in δ13C of methane from −37.8 to −47.5‰ VPDB, allows us to constrain the evolution of the noble gas signature within a source-rock during hydrocarbon generation and expulsion. For the first time, we show that 36Ar concentrations in hydrocarbon gases are not simply controlled by solubility exchange with formation water. Instead, they are shown to decrease dramatically (from 2.6 × 10−7 to 7.0 × 10−9 cm3STPcm−3) with increasing thermal maturity, which we attribute to a dilution effect as more short-chain hydrocarbon compounds are generated through cracking of kerogen and secondary cracking of oil. We develop a model that combines 36Ar concentrations with δ13C data in order to quantify the retention capacity for generated hydrocarbons, and show that between 40 and 80% of the hydrocarbons generated by the Eagle Ford shale are retained within the formation. We also calculate that radiogenic 4He concentrations within the Eagle Ford are well in excess of that which could have accumulated internally since deposition and requires contributions from external 4He sources. The identification of both hydrocarbon expulsion and helium addition to nominally ‘tight’ formations now provides a process driven and quantitative understanding of the fluid migration dynamics and processes controlling these critical formations." @default.
- W2891134433 created "2018-09-27" @default.
- W2891134433 creator A5010858767 @default.
- W2891134433 creator A5052302040 @default.
- W2891134433 creator A5062591945 @default.
- W2891134433 creator A5078244944 @default.
- W2891134433 date "2018-11-01" @default.
- W2891134433 modified "2023-09-26" @default.
- W2891134433 title "Determining gas expulsion vs retention during hydrocarbon generation in the Eagle Ford Shale using noble gases" @default.
- W2891134433 cites W113239123 @default.
- W2891134433 cites W1561542953 @default.
- W2891134433 cites W1763249483 @default.
- W2891134433 cites W1963588718 @default.
- W2891134433 cites W1963641066 @default.
- W2891134433 cites W1968302254 @default.
- W2891134433 cites W1973157140 @default.
- W2891134433 cites W1973777823 @default.
- W2891134433 cites W1977684804 @default.
- W2891134433 cites W1980013965 @default.
- W2891134433 cites W1980492268 @default.
- W2891134433 cites W1985501963 @default.
- W2891134433 cites W1988366507 @default.
- W2891134433 cites W1988483113 @default.
- W2891134433 cites W1988541203 @default.
- W2891134433 cites W1989004297 @default.
- W2891134433 cites W1992088354 @default.
- W2891134433 cites W1993858976 @default.
- W2891134433 cites W1995603005 @default.
- W2891134433 cites W1995955104 @default.
- W2891134433 cites W1998674402 @default.
- W2891134433 cites W2005955991 @default.
- W2891134433 cites W2006544968 @default.
- W2891134433 cites W2011361221 @default.
- W2891134433 cites W2011924180 @default.
- W2891134433 cites W2011996058 @default.
- W2891134433 cites W2020467041 @default.
- W2891134433 cites W2025181343 @default.
- W2891134433 cites W2025270360 @default.
- W2891134433 cites W2025310358 @default.
- W2891134433 cites W2025895735 @default.
- W2891134433 cites W2026370192 @default.
- W2891134433 cites W2026597906 @default.
- W2891134433 cites W2027267814 @default.
- W2891134433 cites W2028092179 @default.
- W2891134433 cites W2032114832 @default.
- W2891134433 cites W2034121971 @default.
- W2891134433 cites W2039322458 @default.
- W2891134433 cites W2044073149 @default.
- W2891134433 cites W2047518132 @default.
- W2891134433 cites W2059192680 @default.
- W2891134433 cites W2064965427 @default.
- W2891134433 cites W2067209039 @default.
- W2891134433 cites W2069651016 @default.
- W2891134433 cites W2070328734 @default.
- W2891134433 cites W2071434351 @default.
- W2891134433 cites W2078221300 @default.
- W2891134433 cites W2080727978 @default.
- W2891134433 cites W2095982138 @default.
- W2891134433 cites W2098849316 @default.
- W2891134433 cites W2105926072 @default.
- W2891134433 cites W2107438032 @default.
- W2891134433 cites W2116638232 @default.
- W2891134433 cites W2119865392 @default.
- W2891134433 cites W2137810111 @default.
- W2891134433 cites W2151995554 @default.
- W2891134433 cites W2154752254 @default.
- W2891134433 cites W2154880694 @default.
- W2891134433 cites W2161076445 @default.
- W2891134433 cites W2167619301 @default.
- W2891134433 cites W2167850211 @default.
- W2891134433 cites W2170995602 @default.
- W2891134433 cites W2321459442 @default.
- W2891134433 cites W2516220643 @default.
- W2891134433 cites W2523944919 @default.
- W2891134433 cites W2583657250 @default.
- W2891134433 cites W2612464280 @default.
- W2891134433 cites W2751905396 @default.
- W2891134433 cites W2756201960 @default.
- W2891134433 cites W2757106002 @default.
- W2891134433 cites W2807500134 @default.
- W2891134433 cites W4205550164 @default.
- W2891134433 cites W4229928224 @default.
- W2891134433 cites W4234456179 @default.
- W2891134433 cites W4376453195 @default.
- W2891134433 doi "https://doi.org/10.1016/j.gca.2018.08.042" @default.
- W2891134433 hasPublicationYear "2018" @default.
- W2891134433 type Work @default.
- W2891134433 sameAs 2891134433 @default.
- W2891134433 citedByCount "28" @default.
- W2891134433 countsByYear W28911344332018 @default.
- W2891134433 countsByYear W28911344332019 @default.
- W2891134433 countsByYear W28911344332020 @default.
- W2891134433 countsByYear W28911344332021 @default.
- W2891134433 countsByYear W28911344332022 @default.
- W2891134433 countsByYear W28911344332023 @default.
- W2891134433 crossrefType "journal-article" @default.
- W2891134433 hasAuthorship W2891134433A5010858767 @default.
- W2891134433 hasAuthorship W2891134433A5052302040 @default.