Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891146096> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2891146096 endingPage "1359" @default.
- W2891146096 startingPage "1359" @default.
- W2891146096 abstract "<h3>Importance</h3> Although deep learning (DL) can identify the intermediate or advanced stages of age-related macular degeneration (AMD) as a binary yes or no, stratified gradings using the more granular Age-Related Eye Disease Study (AREDS) 9-step detailed severity scale for AMD provide more precise estimation of 5-year progression to advanced stages. The AREDS 9-step detailed scale’s complexity and implementation solely with highly trained fundus photograph graders potentially hampered its clinical use, warranting development and use of an alternate AREDS simple scale, which although valuable, has less predictive ability. <h3>Objective</h3> To describe DL techniques for the AREDS 9-step detailed severity scale for AMD to estimate 5-year risk probability with reasonable accuracy. <h3>Design, Setting, and Participants</h3> This study used data collected from November 13, 1992, to November 30, 2005, from 4613 study participants of the AREDS data set to develop deep convolutional neural networks that were trained to provide detailed automated AMD grading on several AMD severity classification scales, using a multiclass classification setting. Two AMD severity classification problems using criteria based on 4-step (AMD-1, AMD-2, AMD-3, and AMD-4 from classifications developed for AREDS eligibility criteria) and 9-step (from AREDS detailed severity scale) AMD severity scales were investigated. The performance of these algorithms was compared with a contemporary human grader and against a criterion standard (fundus photograph reading center graders) used at the time of AREDS enrollment and follow-up. Three methods for estimating 5-year risk were developed, including one based on DL regression. Data were analyzed from December 1, 2017, through April 15, 2018. <h3>Main Outcomes and Measures</h3> Weighted κ scores and mean unsigned errors for estimating 5-year risk probability of progression to advanced AMD. <h3>Results</h3> This study used 67 401 color fundus images from the 4613 study participants. The weighted κ scores were 0.77 for the 4-step and 0.74 for the 9-step AMD severity scales. The overall mean estimation error for the 5-year risk ranged from 3.5% to 5.3%. <h3>Conclusions and Relevance</h3> These findings suggest that DL AMD grading has, for the 4-step classification evaluation, performance comparable with that of humans and achieves promising results for providing AMD detailed severity grading (9-step classification), which normally requires highly trained graders, and for estimating 5-year risk of progression to advanced AMD. Use of DL has the potential to assist physicians in longitudinal care for individualized, detailed risk assessment as well as clinical studies of disease progression during treatment or as public screening or monitoring worldwide." @default.
- W2891146096 created "2018-09-27" @default.
- W2891146096 creator A5020690590 @default.
- W2891146096 creator A5039879095 @default.
- W2891146096 creator A5050212922 @default.
- W2891146096 creator A5065516958 @default.
- W2891146096 creator A5066296116 @default.
- W2891146096 creator A5078445265 @default.
- W2891146096 date "2018-12-01" @default.
- W2891146096 modified "2023-10-10" @default.
- W2891146096 title "Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration" @default.
- W2891146096 cites W109974915 @default.
- W2891146096 cites W159419684 @default.
- W2891146096 cites W180947891 @default.
- W2891146096 cites W2037780881 @default.
- W2891146096 cites W2060578337 @default.
- W2891146096 cites W2131210398 @default.
- W2891146096 cites W2134374023 @default.
- W2891146096 cites W2150472384 @default.
- W2891146096 cites W2164777277 @default.
- W2891146096 cites W2557738935 @default.
- W2891146096 cites W2566154985 @default.
- W2891146096 cites W2580835947 @default.
- W2891146096 cites W2598442119 @default.
- W2891146096 cites W2598520882 @default.
- W2891146096 cites W2750792525 @default.
- W2891146096 cites W2758333670 @default.
- W2891146096 cites W2772246530 @default.
- W2891146096 cites W2796809202 @default.
- W2891146096 cites W2952436003 @default.
- W2891146096 cites W4252865652 @default.
- W2891146096 doi "https://doi.org/10.1001/jamaophthalmol.2018.4118" @default.
- W2891146096 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6583826" @default.
- W2891146096 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30242349" @default.
- W2891146096 hasPublicationYear "2018" @default.
- W2891146096 type Work @default.
- W2891146096 sameAs 2891146096 @default.
- W2891146096 citedByCount "122" @default.
- W2891146096 countsByYear W28911460962019 @default.
- W2891146096 countsByYear W28911460962020 @default.
- W2891146096 countsByYear W28911460962021 @default.
- W2891146096 countsByYear W28911460962022 @default.
- W2891146096 countsByYear W28911460962023 @default.
- W2891146096 crossrefType "journal-article" @default.
- W2891146096 hasAuthorship W2891146096A5020690590 @default.
- W2891146096 hasAuthorship W2891146096A5039879095 @default.
- W2891146096 hasAuthorship W2891146096A5050212922 @default.
- W2891146096 hasAuthorship W2891146096A5065516958 @default.
- W2891146096 hasAuthorship W2891146096A5066296116 @default.
- W2891146096 hasAuthorship W2891146096A5078445265 @default.
- W2891146096 hasBestOaLocation W28911460961 @default.
- W2891146096 hasConcept C118487528 @default.
- W2891146096 hasConcept C119767625 @default.
- W2891146096 hasConcept C141071460 @default.
- W2891146096 hasConcept C154945302 @default.
- W2891146096 hasConcept C2776391266 @default.
- W2891146096 hasConcept C2776403814 @default.
- W2891146096 hasConcept C2993012660 @default.
- W2891146096 hasConcept C41008148 @default.
- W2891146096 hasConcept C71924100 @default.
- W2891146096 hasConceptScore W2891146096C118487528 @default.
- W2891146096 hasConceptScore W2891146096C119767625 @default.
- W2891146096 hasConceptScore W2891146096C141071460 @default.
- W2891146096 hasConceptScore W2891146096C154945302 @default.
- W2891146096 hasConceptScore W2891146096C2776391266 @default.
- W2891146096 hasConceptScore W2891146096C2776403814 @default.
- W2891146096 hasConceptScore W2891146096C2993012660 @default.
- W2891146096 hasConceptScore W2891146096C41008148 @default.
- W2891146096 hasConceptScore W2891146096C71924100 @default.
- W2891146096 hasIssue "12" @default.
- W2891146096 hasLocation W28911460961 @default.
- W2891146096 hasLocation W28911460962 @default.
- W2891146096 hasLocation W28911460963 @default.
- W2891146096 hasLocation W28911460964 @default.
- W2891146096 hasOpenAccess W2891146096 @default.
- W2891146096 hasPrimaryLocation W28911460961 @default.
- W2891146096 hasRelatedWork W1652377223 @default.
- W2891146096 hasRelatedWork W2144810021 @default.
- W2891146096 hasRelatedWork W2259068737 @default.
- W2891146096 hasRelatedWork W2785749084 @default.
- W2891146096 hasRelatedWork W2799665689 @default.
- W2891146096 hasRelatedWork W2901158775 @default.
- W2891146096 hasRelatedWork W2987344742 @default.
- W2891146096 hasRelatedWork W3093130202 @default.
- W2891146096 hasRelatedWork W3190874169 @default.
- W2891146096 hasRelatedWork W2526649874 @default.
- W2891146096 hasVolume "136" @default.
- W2891146096 isParatext "false" @default.
- W2891146096 isRetracted "false" @default.
- W2891146096 magId "2891146096" @default.
- W2891146096 workType "article" @default.