Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891153504> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2891153504 endingPage "1954019" @default.
- W2891153504 startingPage "1954019" @default.
- W2891153504 abstract "The traditional watershed algorithm has the limitation of false mark in medical image segmentation, which causes over-segmentation and images to be contaminated by noise possibly during acquisition. In this study, we proposed an improved watershed segmentation algorithm based on morphological processing and total variation model (TV) for medical image segmentation. First of all, morphological gradient preprocessing is performed on MRI images of brain lesions. Secondly, the gradient images are denoised by the all-variational model. While retaining the edge information of MRI images of brain lesions, the image noise is reduced. And then, the internal and external markers are obtained by forced minimum technique, and the gradient amplitude images are corrected by using these markers. Finally, the modified gradient image is subjected to watershed transformation. The experiment of segmentation and simulation of brain lesion MRI image is carried out on MATLAB. And the segmentation results are compared with other watershed algrothims. The experimental results demonstrate that our method obtains the least number of regions, which can extract MRI images of brain lesions effectively. In addition, this method can inhibit over-segmentation, improving the segmentation results of lesions in MRI images of brain lesions." @default.
- W2891153504 created "2018-09-27" @default.
- W2891153504 creator A5031409604 @default.
- W2891153504 creator A5072029041 @default.
- W2891153504 date "2019-04-08" @default.
- W2891153504 modified "2023-10-17" @default.
- W2891153504 title "Watershed Algorithm for Medical Image Segmentation Based on Morphology and Total Variation Model" @default.
- W2891153504 cites W1878405005 @default.
- W2891153504 cites W2016587710 @default.
- W2891153504 cites W2098652620 @default.
- W2891153504 cites W2124260943 @default.
- W2891153504 cites W2344126189 @default.
- W2891153504 cites W2510155167 @default.
- W2891153504 cites W2532496585 @default.
- W2891153504 cites W2548828405 @default.
- W2891153504 cites W4233279871 @default.
- W2891153504 cites W68870254 @default.
- W2891153504 doi "https://doi.org/10.1142/s0218001419540193" @default.
- W2891153504 hasPublicationYear "2019" @default.
- W2891153504 type Work @default.
- W2891153504 sameAs 2891153504 @default.
- W2891153504 citedByCount "8" @default.
- W2891153504 countsByYear W28911535042020 @default.
- W2891153504 countsByYear W28911535042021 @default.
- W2891153504 countsByYear W28911535042022 @default.
- W2891153504 crossrefType "journal-article" @default.
- W2891153504 hasAuthorship W2891153504A5031409604 @default.
- W2891153504 hasAuthorship W2891153504A5072029041 @default.
- W2891153504 hasConcept C115961682 @default.
- W2891153504 hasConcept C124504099 @default.
- W2891153504 hasConcept C150547873 @default.
- W2891153504 hasConcept C153180895 @default.
- W2891153504 hasConcept C154945302 @default.
- W2891153504 hasConcept C185568154 @default.
- W2891153504 hasConcept C25694479 @default.
- W2891153504 hasConcept C31972630 @default.
- W2891153504 hasConcept C34736171 @default.
- W2891153504 hasConcept C41008148 @default.
- W2891153504 hasConcept C65885262 @default.
- W2891153504 hasConcept C89600930 @default.
- W2891153504 hasConcept C9417928 @default.
- W2891153504 hasConcept C96133863 @default.
- W2891153504 hasConcept C99498987 @default.
- W2891153504 hasConceptScore W2891153504C115961682 @default.
- W2891153504 hasConceptScore W2891153504C124504099 @default.
- W2891153504 hasConceptScore W2891153504C150547873 @default.
- W2891153504 hasConceptScore W2891153504C153180895 @default.
- W2891153504 hasConceptScore W2891153504C154945302 @default.
- W2891153504 hasConceptScore W2891153504C185568154 @default.
- W2891153504 hasConceptScore W2891153504C25694479 @default.
- W2891153504 hasConceptScore W2891153504C31972630 @default.
- W2891153504 hasConceptScore W2891153504C34736171 @default.
- W2891153504 hasConceptScore W2891153504C41008148 @default.
- W2891153504 hasConceptScore W2891153504C65885262 @default.
- W2891153504 hasConceptScore W2891153504C89600930 @default.
- W2891153504 hasConceptScore W2891153504C9417928 @default.
- W2891153504 hasConceptScore W2891153504C96133863 @default.
- W2891153504 hasConceptScore W2891153504C99498987 @default.
- W2891153504 hasFunder F4320321001 @default.
- W2891153504 hasIssue "05" @default.
- W2891153504 hasLocation W28911535041 @default.
- W2891153504 hasOpenAccess W2891153504 @default.
- W2891153504 hasPrimaryLocation W28911535041 @default.
- W2891153504 hasRelatedWork W1669643531 @default.
- W2891153504 hasRelatedWork W1995030392 @default.
- W2891153504 hasRelatedWork W2069711651 @default.
- W2891153504 hasRelatedWork W2117664411 @default.
- W2891153504 hasRelatedWork W2117933325 @default.
- W2891153504 hasRelatedWork W2350546800 @default.
- W2891153504 hasRelatedWork W2378180619 @default.
- W2891153504 hasRelatedWork W2558375057 @default.
- W2891153504 hasRelatedWork W4200128750 @default.
- W2891153504 hasRelatedWork W1967061043 @default.
- W2891153504 hasVolume "33" @default.
- W2891153504 isParatext "false" @default.
- W2891153504 isRetracted "false" @default.
- W2891153504 magId "2891153504" @default.
- W2891153504 workType "article" @default.