Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891159588> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2891159588 abstract "Image splicing forgery means to extract a portion from one image and then place it to another image for merging a new image. Distinguishing a splicing forgery image is a challenging task. In this paper, we propose a deep learning based method to detect splicing image. The proposed network includes two convolutional neural networks (CNNs): the coarse CNN and the refined CNN, which extracts the differences between image itself and splicing regions from patch descriptors of different scales. Unlike previous detection methods that always rely on one property difference detection between the splicing image and the original image, the proposed detection method learns various intrinsic property differences between the splicing images and the original images by CNNs with different scales. For decreasing the complexity of computational time, we further propose image-level CNN to replace the previous patch-level CNN for fast computation. Experimental results show that the proposed detection method is better than the previous detection methods, especially the testing dataset is the real-world dataset." @default.
- W2891159588 created "2018-09-27" @default.
- W2891159588 creator A5038006108 @default.
- W2891159588 creator A5064113420 @default.
- W2891159588 creator A5070419363 @default.
- W2891159588 date "2018-08-01" @default.
- W2891159588 modified "2023-09-24" @default.
- W2891159588 title "C2R Net: The Coarse to Refined Network for Image Forgery Detection" @default.
- W2891159588 cites W1985729543 @default.
- W2891159588 cites W2012187833 @default.
- W2891159588 cites W2052958516 @default.
- W2891159588 cites W2068575457 @default.
- W2891159588 cites W2080403050 @default.
- W2891159588 cites W2096076665 @default.
- W2891159588 cites W2096571195 @default.
- W2891159588 cites W2108017094 @default.
- W2891159588 cites W2118246710 @default.
- W2891159588 cites W2515389788 @default.
- W2891159588 doi "https://doi.org/10.1109/trustcom/bigdatase.2018.00245" @default.
- W2891159588 hasPublicationYear "2018" @default.
- W2891159588 type Work @default.
- W2891159588 sameAs 2891159588 @default.
- W2891159588 citedByCount "9" @default.
- W2891159588 countsByYear W28911595882019 @default.
- W2891159588 countsByYear W28911595882020 @default.
- W2891159588 countsByYear W28911595882021 @default.
- W2891159588 countsByYear W28911595882022 @default.
- W2891159588 countsByYear W28911595882023 @default.
- W2891159588 crossrefType "proceedings-article" @default.
- W2891159588 hasAuthorship W2891159588A5038006108 @default.
- W2891159588 hasAuthorship W2891159588A5064113420 @default.
- W2891159588 hasAuthorship W2891159588A5070419363 @default.
- W2891159588 hasConcept C104317684 @default.
- W2891159588 hasConcept C111472728 @default.
- W2891159588 hasConcept C11413529 @default.
- W2891159588 hasConcept C115961682 @default.
- W2891159588 hasConcept C126422989 @default.
- W2891159588 hasConcept C138885662 @default.
- W2891159588 hasConcept C153180895 @default.
- W2891159588 hasConcept C154945302 @default.
- W2891159588 hasConcept C162324750 @default.
- W2891159588 hasConcept C185592680 @default.
- W2891159588 hasConcept C187736073 @default.
- W2891159588 hasConcept C189950617 @default.
- W2891159588 hasConcept C2780451532 @default.
- W2891159588 hasConcept C31972630 @default.
- W2891159588 hasConcept C41008148 @default.
- W2891159588 hasConcept C45374587 @default.
- W2891159588 hasConcept C54458228 @default.
- W2891159588 hasConcept C55493867 @default.
- W2891159588 hasConcept C67705224 @default.
- W2891159588 hasConcept C81363708 @default.
- W2891159588 hasConcept C9417928 @default.
- W2891159588 hasConceptScore W2891159588C104317684 @default.
- W2891159588 hasConceptScore W2891159588C111472728 @default.
- W2891159588 hasConceptScore W2891159588C11413529 @default.
- W2891159588 hasConceptScore W2891159588C115961682 @default.
- W2891159588 hasConceptScore W2891159588C126422989 @default.
- W2891159588 hasConceptScore W2891159588C138885662 @default.
- W2891159588 hasConceptScore W2891159588C153180895 @default.
- W2891159588 hasConceptScore W2891159588C154945302 @default.
- W2891159588 hasConceptScore W2891159588C162324750 @default.
- W2891159588 hasConceptScore W2891159588C185592680 @default.
- W2891159588 hasConceptScore W2891159588C187736073 @default.
- W2891159588 hasConceptScore W2891159588C189950617 @default.
- W2891159588 hasConceptScore W2891159588C2780451532 @default.
- W2891159588 hasConceptScore W2891159588C31972630 @default.
- W2891159588 hasConceptScore W2891159588C41008148 @default.
- W2891159588 hasConceptScore W2891159588C45374587 @default.
- W2891159588 hasConceptScore W2891159588C54458228 @default.
- W2891159588 hasConceptScore W2891159588C55493867 @default.
- W2891159588 hasConceptScore W2891159588C67705224 @default.
- W2891159588 hasConceptScore W2891159588C81363708 @default.
- W2891159588 hasConceptScore W2891159588C9417928 @default.
- W2891159588 hasLocation W28911595881 @default.
- W2891159588 hasOpenAccess W2891159588 @default.
- W2891159588 hasPrimaryLocation W28911595881 @default.
- W2891159588 hasRelatedWork W2392187754 @default.
- W2891159588 hasRelatedWork W2430685368 @default.
- W2891159588 hasRelatedWork W2760085659 @default.
- W2891159588 hasRelatedWork W2810384904 @default.
- W2891159588 hasRelatedWork W2885073348 @default.
- W2891159588 hasRelatedWork W2886673456 @default.
- W2891159588 hasRelatedWork W3012978760 @default.
- W2891159588 hasRelatedWork W3086857729 @default.
- W2891159588 hasRelatedWork W3154474343 @default.
- W2891159588 hasRelatedWork W4283328168 @default.
- W2891159588 isParatext "false" @default.
- W2891159588 isRetracted "false" @default.
- W2891159588 magId "2891159588" @default.
- W2891159588 workType "article" @default.