Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891201712> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2891201712 abstract "A human pose often conveys not only the configuration of the body parts, but also implicit predictive information about the ensuing motion. This dynamic information can benefit vision applications which lack explicit motion cues. The human visual system can easily perceive the dynamic information in still images. However, computational algorithms to infer and utilize it in computer vision applications are limited. In this paper, we propose a probabilistic framework to infer the dynamic information associated with a human pose. The inference problem is posed as a nonparametric density estimation problem on a non-Euclidean manifold of linear dynamical models. Since direct modeling is intractable, we develop a data driven approach, estimating the density for the test sample under consideration. Statistical inference on the estimated density provides us with quantities of interest like the most probable future motion of the human and the amount of motion information conveyed by a pose. Our experiments demonstrate that the extracted motion information benefits numerous applications in computer vision. In particular, the predicted future motion is useful for activity recognition, human trajectory synthesis, and motion prediction." @default.
- W2891201712 created "2018-09-27" @default.
- W2891201712 creator A5009101133 @default.
- W2891201712 creator A5023195442 @default.
- W2891201712 creator A5056968977 @default.
- W2891201712 creator A5061664078 @default.
- W2891201712 creator A5062945520 @default.
- W2891201712 creator A5086843922 @default.
- W2891201712 date "2018-06-01" @default.
- W2891201712 modified "2023-09-28" @default.
- W2891201712 title "Predicting Dynamical Evolution of Human Activities from a Single Image" @default.
- W2891201712 cites W1479807131 @default.
- W2891201712 cites W1983705368 @default.
- W2891201712 cites W1994499467 @default.
- W2891201712 cites W1995903777 @default.
- W2891201712 cites W1999449847 @default.
- W2891201712 cites W2013076218 @default.
- W2891201712 cites W2019661178 @default.
- W2891201712 cites W2021265981 @default.
- W2891201712 cites W2030899956 @default.
- W2891201712 cites W2038617195 @default.
- W2891201712 cites W2046589395 @default.
- W2891201712 cites W2061851474 @default.
- W2891201712 cites W2086839920 @default.
- W2891201712 cites W2097074225 @default.
- W2891201712 cites W2101194540 @default.
- W2891201712 cites W2103163130 @default.
- W2891201712 cites W2103357581 @default.
- W2891201712 cites W2103822353 @default.
- W2891201712 cites W2105288006 @default.
- W2891201712 cites W2108036604 @default.
- W2891201712 cites W2109875425 @default.
- W2891201712 cites W2112570665 @default.
- W2891201712 cites W2118895150 @default.
- W2891201712 cites W2125849446 @default.
- W2891201712 cites W2128097790 @default.
- W2891201712 cites W2131846894 @default.
- W2891201712 cites W2137560623 @default.
- W2891201712 cites W2137981002 @default.
- W2891201712 cites W2143173374 @default.
- W2891201712 cites W2146634731 @default.
- W2891201712 cites W2148948295 @default.
- W2891201712 cites W2150499704 @default.
- W2891201712 cites W2161969291 @default.
- W2891201712 cites W2171011251 @default.
- W2891201712 cites W2963669520 @default.
- W2891201712 cites W4246750223 @default.
- W2891201712 cites W8105021 @default.
- W2891201712 doi "https://doi.org/10.1109/cvprw.2018.00079" @default.
- W2891201712 hasPublicationYear "2018" @default.
- W2891201712 type Work @default.
- W2891201712 sameAs 2891201712 @default.
- W2891201712 citedByCount "3" @default.
- W2891201712 countsByYear W28912017122021 @default.
- W2891201712 countsByYear W28912017122022 @default.
- W2891201712 crossrefType "proceedings-article" @default.
- W2891201712 hasAuthorship W2891201712A5009101133 @default.
- W2891201712 hasAuthorship W2891201712A5023195442 @default.
- W2891201712 hasAuthorship W2891201712A5056968977 @default.
- W2891201712 hasAuthorship W2891201712A5061664078 @default.
- W2891201712 hasAuthorship W2891201712A5062945520 @default.
- W2891201712 hasAuthorship W2891201712A5086843922 @default.
- W2891201712 hasConcept C115961682 @default.
- W2891201712 hasConcept C154945302 @default.
- W2891201712 hasConcept C31972630 @default.
- W2891201712 hasConcept C41008148 @default.
- W2891201712 hasConceptScore W2891201712C115961682 @default.
- W2891201712 hasConceptScore W2891201712C154945302 @default.
- W2891201712 hasConceptScore W2891201712C31972630 @default.
- W2891201712 hasConceptScore W2891201712C41008148 @default.
- W2891201712 hasLocation W28912017121 @default.
- W2891201712 hasOpenAccess W2891201712 @default.
- W2891201712 hasPrimaryLocation W28912017121 @default.
- W2891201712 hasRelatedWork W2005185696 @default.
- W2891201712 hasRelatedWork W2092957489 @default.
- W2891201712 hasRelatedWork W2130228941 @default.
- W2891201712 hasRelatedWork W2132132164 @default.
- W2891201712 hasRelatedWork W2161229648 @default.
- W2891201712 hasRelatedWork W2235753890 @default.
- W2891201712 hasRelatedWork W2314419244 @default.
- W2891201712 hasRelatedWork W2366116130 @default.
- W2891201712 hasRelatedWork W2889893736 @default.
- W2891201712 hasRelatedWork W2993674027 @default.
- W2891201712 isParatext "false" @default.
- W2891201712 isRetracted "false" @default.
- W2891201712 magId "2891201712" @default.
- W2891201712 workType "article" @default.