Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891207384> ?p ?o ?g. }
- W2891207384 endingPage "577" @default.
- W2891207384 startingPage "570" @default.
- W2891207384 abstract "Male contribution to a couple's fecundity is important, and identifying the dietary factors that can influence male fertility potential is of high importance. Despite this importance, there are currently no clear clinical guidelines for male patients seeking fertility treatment. In this review, we present the most up-to-date evidence about diet and male fertility in humans. We focus on the dietary factors necessary for production of healthy functioning sperm with high fertility potential. Based on this review, men may be encouraged to use antioxidant supplements and to follow dietary patterns favoring the consumption of seafood, poultry, nuts, whole grains, fruits, and vegetables. Evidence is strongest for recommending the use of antioxidant supplements to men in couples undergoing infertility treatment—although the specific antioxidants and doses remain unclear—and increasing consumption of omega-3 fatty acids from fish and nuts. Male contribution to a couple's fecundity is important, and identifying the dietary factors that can influence male fertility potential is of high importance. Despite this importance, there are currently no clear clinical guidelines for male patients seeking fertility treatment. In this review, we present the most up-to-date evidence about diet and male fertility in humans. We focus on the dietary factors necessary for production of healthy functioning sperm with high fertility potential. Based on this review, men may be encouraged to use antioxidant supplements and to follow dietary patterns favoring the consumption of seafood, poultry, nuts, whole grains, fruits, and vegetables. Evidence is strongest for recommending the use of antioxidant supplements to men in couples undergoing infertility treatment—although the specific antioxidants and doses remain unclear—and increasing consumption of omega-3 fatty acids from fish and nuts. Discuss: You can discuss this article with its authors and other readers at https://www.fertstertdialog.com/users/16110-fertility-and-sterility/posts/33451-26260 Discuss: You can discuss this article with its authors and other readers at https://www.fertstertdialog.com/users/16110-fertility-and-sterility/posts/33451-26260 Approximately one in six couples who try to become pregnant fail to do so within a year, thus meeting the definition of infertility (1Thoma M.E. McLain A.C. Louis J.F. King R.B. Trumble A.C. Sundaram R. et al.Prevalence of infertility in the United States as estimated by the current duration approach and a traditional constructed approach.Fertil Steril. 2013; 99: 1324-1331.e1Abstract Full Text Full Text PDF PubMed Scopus (161) Google Scholar). Although male factor is identified in ∼50% of couples seeking medical help with infertility (2Legare C. Droit A. Fournier F. Bourassa S. Force A. Cloutier F. et al.Investigation of male infertility using quantitative comparative proteomics.J Proteome Res. 2014; 13: 5403-5414Crossref PubMed Scopus (0) Google Scholar, 3Thonneau P. Marchand S. Tallec A. Ferial M.-L. Ducot B. Lansac J. et al.Incidence and main causes of infertility in a resident population (1 850 000) of three French regions (1988–1989).Hum Reprod. 1991; 6: 811-816Crossref PubMed Google Scholar), infertility research has primarily focused on female factors. Nevertheless, three meta-analyses have documented collectively downward trends in sperm concentration and total sperm count over the past eight decades (4Carlsen E. Giwercman A. Keiding N. Skakkebaek N.E. Evidence for decreasing quality of semen during past 50 years.BMJ. 1992; 305: 609-613Crossref PubMed Google Scholar, 5Swan S.H. Elkin E.P. Fenster L. Have sperm densities declined? A reanalysis of global trend data.Environ Health Perspect. 1997; 105: 1228-1232Crossref PubMed Google Scholar, 6Levine H. Jørgensen N. Martino-Andrade A. Mendiola J. Weksler-Derri D. Mindlis I. et al.Temporal trends in sperm count: a systematic review and meta-regression analysis.Hum Reprod Update. 2017; : 1-14PubMed Google Scholar). The most recent meta-analyses, which included more than 185 studies of men without known fertility problems, found that sperm counts have declined in industrialized countries by 50%–60% from 1973 to 2011 (6Levine H. Jørgensen N. Martino-Andrade A. Mendiola J. Weksler-Derri D. Mindlis I. et al.Temporal trends in sperm count: a systematic review and meta-regression analysis.Hum Reprod Update. 2017; : 1-14PubMed Google Scholar). Although the underlying causes of this downward trend in semen quality are a matter of both active research and heated debate, concurrent trends in worsening diet quality (7U.S. Department of AgricultureProfiling food consumption in America. United States Government Printing Office, Washington, DC2003: 13-21Google Scholar) and increasing obesity (8Finucane M.M. Stevens G.A. Cowan M.J. Danaei G. Lin J.K. Paciorek C.J. et al.National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants.Lancet. 2011; 377: 557-567Abstract Full Text Full Text PDF PubMed Scopus (2258) Google Scholar, 9Sermondade N. Faure C. Fezeu L. Lévy R. Czernichow S. Obesity-Fertility Collaborative Group. Obesity and increased risk for oligozoospermia and azoospermia.Arch Intern Med. 2012; 172: 440-442Crossref PubMed Scopus (0) Google Scholar, 10Sermondade N. Faure C. Fezeu L. Shayeb A.G. Bonde J.P. Jensen T.K. et al.BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis.Hum Reprod Update. 2013; 19: 221-231Crossref PubMed Scopus (160) Google Scholar) could to some extent explain these trends. Although there is strong and consistent evidence that overweight and obesity play a significant role in maintaining semen quality (10Sermondade N. Faure C. Fezeu L. Shayeb A.G. Bonde J.P. Jensen T.K. et al.BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis.Hum Reprod Update. 2013; 19: 221-231Crossref PubMed Scopus (160) Google Scholar) and a couple's fertility (11Sundaram R. Mumford S.L. Buck Louis G.M. Couples' body composition and time-to-pregnancy.Hum Reprod. 2017; 32: 662-668Crossref PubMed Scopus (7) Google Scholar), there are no clear dietary guidelines to counsel men in couples trying to become pregnant. In the present review, we aim to summarize the growing literature about the role of men's diet on fertility. Most of the literature has focused on the relationship between diet and semen quality. Although conventional semen analysis is a far from perfect fertility proxy for reproductive potential (12Buck Louis G.M. Sundaram R. Schisterman E.F. Sweeney A. Lynch C.D. Kim S. et al.Semen quality and time to pregnancy: the Longitudinal Investigation of Fertility and the Environment Study.Fertil Steril. 2014; 101: 453-462Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 13Patel C.J. Sundaram R. Buck Louis G.M. A data-driven search for semen-related phenotypes in conception delay.Andrology. 2017; 5: 95-102Crossref PubMed Scopus (0) Google Scholar, 14Sripada S. Townend J. Campbell D. Murdoch L. Mathers E. Bhattacharya S. Relationship between semen parameters and spontaneous pregnancy.Fertil Steril. 2010; 94: 624-630Abstract Full Text Full Text PDF PubMed Scopus (17) Google Scholar, 15Jedrzejczak P. Taszarek-Hauke G. Hauke J. Pawelczyk L. Duleba A.J. Prediction of spontaneous conception based on semen parameters.Int J Androl. 2008; 31: 499-507Crossref PubMed Scopus (47) Google Scholar, 16Nallella K.P. Sharma R.K. Aziz N. Agarwal A. Significance of sperm characteristics in the evaluation of male infertility.Fertil Steril. 2006; 85: 629-634Abstract Full Text Full Text PDF PubMed Scopus (144) Google Scholar, 17Guzick D.S. Overstreet J.W. Factor-Litvak P. Brazil C.K. Nakajima S.T. Coutifaris C. et al.Sperm morphology, motility, and concentration in fertile and infertile men.N Engl J Med. 2001; 345: 1388-1393Crossref PubMed Scopus (687) Google Scholar), it is considered to be the cornerstone of the male fertility evaluation (18Medicine PCotASfRDiagnostic evaluation of the infertile female: a committee opinion.Fertil Steril. 2015; 103: e44-e50Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar) and does provide insight into male reproductive function. We will also consider the relation between diet and serum reproductive hormones as well as the emerging literature on men's diet and couple-based outcomes, including measures of fecundity in studies of pregnancy planners and studies of pregnancy outcomes after the use of assisted reproductive technologies (ART). To facilitate that discussion, we will first review the literature that describes dietary factors that may directly affect semen quality as sperm mature, followed by a discussion of dietary factors that may affect spermatogenesis by altering the reproductive hormonal milieu, and close our discussion by reviewing how those findings fit into overall patterns of diet. We will then end the review by discussing the gaps in this growing literature and the implications for research and clinical practice. Although there are a large number of complex steps in the transformation from spermatogonia to mature sperm, focusing on a few key changes can facilitate the discussion of how nutritional input affects this complex process. First, spermatozoa lose most of their cytoplasm before leaving the testis, and condensation of the sperm chromatin occurs after they progress from the caput epididymis in transit to the cauda epididymis. These processes include repeated oxidation reactions (19Flesch F.M. Gadella B.M. Dynamics of the mammalian sperm plasma membrane in the process of fertilization.Biochim Biophys Acta. 2000; 1469: 197-235Crossref PubMed Scopus (334) Google Scholar). The shuttle systems for removing and transferring reducing equivalents into the mitochondria are not operational during these reactions, essentially leaving sperm without intracellular defense mechanisms against oxidative damage. Only enzymatic and nonenzymatic antioxidants in seminal plasma provide cellular protection (20Wathes D.C. Abayasekara D.R.E. Aitken R.J. Polyunsaturated fatty acids in male and female reproduction.Biol Reprod. 2007; 77: 190-201Crossref PubMed Scopus (336) Google Scholar). At the same time, the fatty acid composition of the cell membrane changes, favoring the accumulation of long-chain polyunsaturated fatty acids (PUFAs). Although all three processes are essential for performing the sperm's function, they make sperm exceedingly susceptible to oxidative stress by simultaneously removing most of the nonspecific defense against oxidative damage (by loss of cytoplasm), concentrating the endogenous production of reactive oxygen species (ROS; by increasing concentration of mitochondria relative to cell size), and preferentially incorporating into the cell membrane a highly oxidizable substrate (PUFAs) (21Hurtado de Catalfo G.E. de Alaniz MJT Marra C.A. Dietary lipids modify redox homeostasis and steroidogenic status in rat testis.Nutrition. 2008; 24: 717-726Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 22Aitken R.J. Wingate J.K. De Iuliis G.N. Koppers A.J. McLaughlin E.A. Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa.J Clin Endocrinol Metab. 2006; 91: 4154-4163Crossref PubMed Scopus (0) Google Scholar). Second, an adequate supply of substrates for DNA production is essential to meet the constant demands for new DNA of spermatogenesis. The fatty acid composition of the sperm cell membrane is highly important for proper sperm function. The sperm cell membrane plays a critical role in key fertilization events, such as capacitation, acrosome reaction, and sperm-oocyte fusion (19Flesch F.M. Gadella B.M. Dynamics of the mammalian sperm plasma membrane in the process of fertilization.Biochim Biophys Acta. 2000; 1469: 197-235Crossref PubMed Scopus (334) Google Scholar). The amount of PUFAs, particularly docosahexaenoic acid (DHA), in the sperm cell membrane increases as the sperm matures (23Lenzi A. Gandini L. Maresca V. Rago R. Sgro P. Dondero F. et al.Fatty acid composition of spermatozoa and immature germ cells.Mol Hum Reprod. 2000; 6: 226-231Crossref PubMed Google Scholar). DHA represents 20% of the fatty acid content in mature sperm, compared with only 4% in immature germ cells (23Lenzi A. Gandini L. Maresca V. Rago R. Sgro P. Dondero F. et al.Fatty acid composition of spermatozoa and immature germ cells.Mol Hum Reprod. 2000; 6: 226-231Crossref PubMed Google Scholar). The relative content of DHA is higher in epididymal versus testicular sperm in mice (24Ollero M. Powers R.D. Alvarez J.G. Variation of docosahexaenoic acid content in subsets of human spermatozoa at different stages of maturation: implications for sperm lipoperoxidative damage.Mol Reprod Dev. 2000; 55: 326-334Crossref PubMed Scopus (0) Google Scholar). Similarly, human orchiectomy specimens show that the proportion of PUFAs in cell membranes is higher in sperm recovered from the cauda than in sperm recovered from the caput epipidymis (25Haidl G. Opper C. Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation.Hum Reprod. 1997; 12: 2720-2723Crossref PubMed Scopus (55) Google Scholar). The sperm cell membrane fatty acid composition is partly due to a highly specialized local metabolism. Sertoli cells express Δ6-desaturase (the rate-limiting enzyme in the metabolism of PUFAs) and Δ5-desaturase at levels similar to those in the liver (26Saether T. Tran T.N. Rootwelt H. Christophersen B.O. Haugen T.B. Expression and regulation of Δ5-desaturase, Δ6-desaturase, stearoyl-coenzyme A (CoA) desaturase 1, and stearoyl-CoA desaturase 2 in rat testis.Biol Reprod. 2003; 69: 117-124Crossref PubMed Scopus (0) Google Scholar). In addition, enzymes involved in the elongation of PUFAs are expressed in a very limited number of tissues, but are highly expressed in the testis (27Tvrdik P. Westerberg R. Silve S. Asadi A. Jakobsson A. Cannon B. et al.Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids.J Cell Biol. 2000; 149: 707-718Crossref PubMed Scopus (148) Google Scholar, 28Mandal M.N.A. Ambasudhan R. Wong P.W. Gage P.J. Sieving P.A. Ayyagari R. Characterization of mouse orthologue of ELOVL4: genomic organization and spatial and temporal expression.Genomics. 2004; 83: 626-635Crossref PubMed Scopus (65) Google Scholar, 29Zhang K. Kniazeva M. Han M. Li W. Yu Z. Yang Z. et al.A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy.Nat Med. 2001; 27: 89-93Crossref Scopus (312) Google Scholar, 30Leonard A.E. Bobik E.G. Dorado J. Kroeger P.E. Chuang L.T. Thurmond J.M. et al.Cloning of a human cDNA encoding a novel enzyme involved in the elongation of long-chain polyunsaturated fatty acids.Biochem J. 2000; 350: 765-770Crossref PubMed Scopus (0) Google Scholar). Furthermore, it has been observed that Sertoli cells can actively convert the 18- and 20-carbon PUFAs into their 22- and 24-carbon metabolites more efficiently than hepatocytes (31Retterstøl K. Haugen T.B. Woldseth B. Christophersen B.O. A comparative study of the metabolism of n-9, n-6 and n-3 fatty acids in testicular cells from immature rat.Biochim Biophys Acta. 1998; 1392: 59-72Crossref PubMed Scopus (0) Google Scholar, 32Retterstøl K. Haugen T.B. Christophersen B.O. The pathway from arachidonic to docosapentaenoic acid (20:4n-6 to 22:5n-6) and from eicosapentaenoic to docosahexaenoic acid (20:5n-3 to 22:6n-3) studied in testicular cells from immature rats.Biochim Biophys Acta. 2000; 1483: 119-131Crossref PubMed Scopus (0) Google Scholar, 33Christophersen B.O. Hagve T.A. Christensen E. Johansen Y. Tverdal S. Eicosapentaenoic and arachidonic acid metabolism in isolated liver cells.Scand J Clin Lab Invest Suppl. 1986; 184: 55-60PubMed Google Scholar). Also in Sertoli cells, the enzymes involved in this pathway prefer the conversion of omega-3 fatty acids into 22- and 2four carbon metabolites over converting omega-6 fatty acids (31Retterstøl K. Haugen T.B. Woldseth B. Christophersen B.O. A comparative study of the metabolism of n-9, n-6 and n-3 fatty acids in testicular cells from immature rat.Biochim Biophys Acta. 1998; 1392: 59-72Crossref PubMed Scopus (0) Google Scholar, 32Retterstøl K. Haugen T.B. Christophersen B.O. The pathway from arachidonic to docosapentaenoic acid (20:4n-6 to 22:5n-6) and from eicosapentaenoic to docosahexaenoic acid (20:5n-3 to 22:6n-3) studied in testicular cells from immature rats.Biochim Biophys Acta. 2000; 1483: 119-131Crossref PubMed Scopus (0) Google Scholar, 33Christophersen B.O. Hagve T.A. Christensen E. Johansen Y. Tverdal S. Eicosapentaenoic and arachidonic acid metabolism in isolated liver cells.Scand J Clin Lab Invest Suppl. 1986; 184: 55-60PubMed Google Scholar), explaining to some extent the high concentration of DHA in sperm. The proper functioning of this specialized machinery in the testis relies on an adequate supply of metabolic substrates obtained from diet. PUFAs can not be endogenously synthesized by humans and must therefore be obtained from consuming nuts, seeds, and vegetable oils in the case of 18-carbon linoleic (LA) and α-linolenic acids (ALA), or seafood in the case of longer-chain omega-3 PUFAs such as eicosapentaenoic acid (EPA) and DHA. Consuming these fatty acids or their food sources has been shown to modify the fatty acid composition of sperm and semen quality. Diets supplemented with fish oil, which is rich in EPA and DHA, increase testicular DHA concentrations in rodents (34Sebokova E. Garg M.L. Wierzbicki A. Thomson A.B.R. Alteration of the lipid compostion ot rat testicular plasma membranes by dietary (n-3) fatty acids changes the responsiveness of Leydig cells and testosterne synthesis.J Nutr. 1990; 120: 610-618Crossref PubMed Google Scholar, 35Ayala S. Brenner R.R. Effect of polyunsaturated fatty acids of the alpha-linolenic series in the lipid composition of rat testicles during development.Acta Physiol Lat Am. 1980; 30: 147-152PubMed Google Scholar, 36Ayala S. Brenner R.R. Dumm C. Effect of polyunsaturated fatty acids of the α-linolenic series on the development of rat testicles.Lipids. 1977; 12: 1017-1024Crossref PubMed Scopus (0) Google Scholar) and sperm membrane DHA in humans (37Safarinejad M.R. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic antioxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study.Andrologia. 2011; 43: 38-47Crossref PubMed Scopus (0) Google Scholar). Sperm membrane DHA content has, in turn, been associated with higher sperm motility (37Safarinejad M.R. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic antioxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study.Andrologia. 2011; 43: 38-47Crossref PubMed Scopus (0) Google Scholar, 38Conquer J.A. Martin J.B. Tummon I. Watson L. Tekpetey F. Fatty acid analysis of blood serum, seminal plasma and spermatozoa of normozoospermic vs. asthenozoospermic males.Lipids. 1999; 34: 793-799Crossref PubMed Scopus (0) Google Scholar, 39Zalata A. Christophe A. Depuydt C. Schoonjans F. Comhaire F. The fatty acid composition of phospholipids of spermatozoa from infertile patients.Mol Hum Reprod. 1998; 4: 111-118Crossref PubMed Scopus (155) Google Scholar, 40Gulaya N.M. Margitich V.M. Govseeva N.M. Klimashevsky V.M. Gorpynchenko II, Boyko M.I. Phospholipid composition of human sperm and seminal plasma in relation to sperm fertility.Arch Androl. 2001; 46: 169-175Crossref PubMed Scopus (39) Google Scholar, 41Tavilani H. Doosti M. Abdi K. Vaisiraygani A. Joshaghani H.R. Decreased polyunsaturated and increased saturated fatty acid concentration in spermatozoa from asthenozoospermic males as compared with normozoospermic males.Andrologia. 2006; 38: 173-178Crossref PubMed Scopus (0) Google Scholar, 42Aksoy Y. Aksoy H. Altinkaynak K. Aydin H.R. Ozkan A. Sperm fatty acid composition in subfertile men.Prostaglandins Leukot Essent Fatty Acids. 2006; 75: 75-79Abstract Full Text Full Text PDF PubMed Scopus (81) Google Scholar, 43Tavilani H. Doosti M. Nourmohammadi I. Mahjub H. Vaisiraygani A. Salimi S. et al.Lipid composition of spermatozoa in normozoospermic and asthenozoospermic males.Prostaglandins Leukot Essent Fatty Acids. 2007; 77: 45-50Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar), normal morphology (37Safarinejad M.R. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic antioxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study.Andrologia. 2011; 43: 38-47Crossref PubMed Scopus (0) Google Scholar, 43Tavilani H. Doosti M. Nourmohammadi I. Mahjub H. Vaisiraygani A. Salimi S. et al.Lipid composition of spermatozoa in normozoospermic and asthenozoospermic males.Prostaglandins Leukot Essent Fatty Acids. 2007; 77: 45-50Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar), and concentration (37Safarinejad M.R. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic antioxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study.Andrologia. 2011; 43: 38-47Crossref PubMed Scopus (0) Google Scholar, 39Zalata A. Christophe A. Depuydt C. Schoonjans F. Comhaire F. The fatty acid composition of phospholipids of spermatozoa from infertile patients.Mol Hum Reprod. 1998; 4: 111-118Crossref PubMed Scopus (155) Google Scholar, 42Aksoy Y. Aksoy H. Altinkaynak K. Aydin H.R. Ozkan A. Sperm fatty acid composition in subfertile men.Prostaglandins Leukot Essent Fatty Acids. 2006; 75: 75-79Abstract Full Text Full Text PDF PubMed Scopus (81) Google Scholar, 43Tavilani H. Doosti M. Nourmohammadi I. Mahjub H. Vaisiraygani A. Salimi S. et al.Lipid composition of spermatozoa in normozoospermic and asthenozoospermic males.Prostaglandins Leukot Essent Fatty Acids. 2007; 77: 45-50Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 44Chavarro J.E. Furtado J. Toth T.L. Ford J. Keller M. Campos H. et al.Trans-fatty acid levels in sperm are associated with sperm concentration among men from an infertility clinic.Fertil Steril. 2011; 95: 1794-1797Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 45Afeiche M.C. Gaskins A.J. Williams P.L. Toth T.L. Wright D.L. Tanrikut C. et al.Processed meat intake is unfavorably and fish intake favorably associated with semen quality indicators among men attending a fertility clinic.J Nutr. 2014; 144: 1091-1098Crossref PubMed Scopus (75) Google Scholar). Moreover, intake of these fatty acids and their food sources has been related to semen quality. In observational studies among fertility patients, higher intake of omega-3 PUFAs has been related to a greater proportion of morphologically normal sperm (46Attaman J.A. Toth T.L. Furtado J. Campos H. Hauser R. Chavarro J.E. Dietary fat and semen quality among men attending a fertility clinic.Hum Reprod. 2012; 27: 1466-1474Crossref PubMed Scopus (91) Google Scholar) and fish intake to total sperm count and normal sperm morphology (45Afeiche M.C. Gaskins A.J. Williams P.L. Toth T.L. Wright D.L. Tanrikut C. et al.Processed meat intake is unfavorably and fish intake favorably associated with semen quality indicators among men attending a fertility clinic.J Nutr. 2014; 144: 1091-1098Crossref PubMed Scopus (75) Google Scholar). Although in a small trial (n = 28) among asthenospermic men, 3 months of DHA supplementation did not improve sperm motility (47Conquer J A. Martin J.B. Tummon I. Watson L. Tekpetey F. Effect of DHA supplementation on DHA status and sperm motilty in asthenozoospermic males.Lipids. 2000; 35: 149-154Crossref PubMed Scopus (78) Google Scholar), other trials are in agreement with the preponderance of the literature. A trial of long-chain omega-3 fatty acid (DHA + EPA) supplementation (1.84 g/d for 32 weeks) among 211 men with idiopathic oligoasthenoteratospermia resulted in a significant increase in total sperm count, sperm concentration, and percentages of motile and morphologically normal sperm (37Safarinejad M.R. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic antioxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study.Andrologia. 2011; 43: 38-47Crossref PubMed Scopus (0) Google Scholar). Walnuts, which contain large amounts of plant omega-3 fatty acids, have been related to higher sperm parameters. In a randomized controlled trial of young healthy men consuming a typical Western-style diet, men randomized to walnut supplementation of 75 g/d for 12 weeks had improvements in sperm vitality, motility, and morphology compared with control subjects (48Robbins W.A. Xun L. FitzGerald L.Z. Esguerra S. Henning S.M. Carpenter C.L. Walnuts improve semen quality in men consuming a Western-style diet: randomized control dietary intervention trial.Biol Reprod. 2012; 87 (1–8): 101Crossref PubMed Scopus (0) Google Scholar). Recent studies further suggest that the benefit may extend beyond semen quality. In a prospective cohort of couples trying to become pregnant, men's fish intake was related to shorter time to pregnancy and lower risk of infertility (49Gaskins A.J. Sundaram R. Buck Louis G.M. Chavarro J.E. Seafood intake, sexual activity, and time to pregnancy.J Clin Edocrinol Metab. 2018; 103: 2680-2688Crossref PubMed Scopus (0) Google Scholar). Trans fatty acids and saturated fats, on the other hand, appear to have the effect on spermatogenesis opposite to that of PUFAs. Like PUFAs, trans fats—which are primarily found in commercially baked and fried foods—accumulate in the testis (50Jensen B. Rat testicular lipids and dietary isomeric fatty acids in essential fatty acid deficiency.Lipids. 1976; 11: 179-188Crossref PubMed Google Scholar, 51Privett O.S. Phillips F. Shimasaki H. Nozawa T. Nickell E.C. Studies of effects of trans fatty acids in the diet on lipid metabolism in essential fatty acid deficient rats.Am J Clin Nutr. 1977; 30: 1009-1017Crossref PubMed Google Scholar), but unlike with PUFAs, sperm membrane levels and intake of these fatty acids has been consistently related to poor semen quality, particularly to lower counts (44Chavarro J.E. Furtado J. Toth T.L. Ford J. Keller M. Campos H. et al.Trans-fatty acid levels in sperm are associated with sperm concentration among men from an infertility clinic.Fertil Steril. 2011; 95: 1794-1797Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 46Attaman J.A. Toth T.L. Furtado J. Campos H. Hauser R. Chavarro J.E. Dietary fat and semen quality among men attending a fertility clinic.Hum Reprod. 2012; 27: 1466-1474Crossref PubMed Scopus (91) Google Scholar, 52Jensen T.K. Heitmann B.L. Jensen M.B. Halldorsson T.I. Andersson A.M. Skakkebaek N.E. et al.High dietary intake of saturated fat is associated with reduced semen quality among 701 young Danish men from the general population.Am J Clin Nutr. 2013; 97: 411-418Crossref PubMed Scopus (50) Google Scholar, 53Chavarro J.E. Minguez-Alarcon L. Mendiola J. Cutillas-Tolin A. Lopez-Espin J.J. Torres-Cantero A.M. Trans fatty acid intake is inversely related to total sperm count in young healthy men.Hum Reprod. 2014; 29: 429-440Crossref PubMed Scopus (35) Google Scholar). In fact, nonhuman models suggest that diets supplemented with trans fats result not only in decreased spermatogenesis but can, in a dose-dependent manner, decrease production of testosterone, reduce testicular mass, and promote testicular degeneration (50Jensen B. Rat testicular lipids and dietary isomeric fatty acids in essential fatty acid deficiency.Lipids. 1976; 11: 179-188Crossref PubMed Google Scholar, 54Hanis T. Zidek V. Sachova J. Klir P. Deyl Z. Effects of dietary trans-fatty acids on reproductive performance of Wistar rats.Br J Nutr. 1989; 61: 519-529Crossref PubMed Google Scholar, 55Veaute C. Andreoli M.F. Racca A. Bailat A. Scalerandi M.V. Bernal C. et al.Effects of isomeric fatty acids on reproductive parameters in mice.Am J Reprod Immunol. 2007; 58: 487-496Crossref PubMed Scopus (0) Google Scholar, 56MInguez-Alarcón L. Chavarro J.E. Mendiola J. Roca M. Tanrikut C. Vioque J. et al.Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men.Asian J Androl. 2017; 19: 184-190Crossref PubMed Scopus (0) Google Scholar). Of note, the decision by the U.S. Food and Drug Administration to exclude trans fats from industrial origin from the list of substances Generally Regarded as Safe as of June 2018 will effectively eliminate this concern from the U.S. once the ruling is fully implemented. Saturated fats, however, will not disappear from the food supply. Given the pervasiveness of trans fats in the global food supply, particularly in the developing world, this will, however, remain a concern. Although evidence is thinner, two observational studies have found that saturated fat intake is inversely related to total sperm count and concentration among fertility patients in the U.S. (46Attaman J.A. Toth T.L. Furtado J. Campos H. Hauser R. Chavarro J.E. Dietary fat and semen quality among men attending a fertility clinic.Hum Reprod. 2012; 27: 1466-1474Crossref PubMed Scopus (91) Google Scholar) and among healthy young men in Denmark (52Jensen T.K. Heitmann B.L. Jensen M.B. Halldorsson T.I. Andersson A.M. Skakkebaek N.E. et al.High di" @default.
- W2891207384 created "2018-09-27" @default.
- W2891207384 creator A5021118497 @default.
- W2891207384 creator A5024462980 @default.
- W2891207384 creator A5075236631 @default.
- W2891207384 date "2018-09-01" @default.
- W2891207384 modified "2023-10-17" @default.
- W2891207384 title "Diet and men's fertility: does diet affect sperm quality?" @default.
- W2891207384 cites W1483006513 @default.
- W2891207384 cites W1485407919 @default.
- W2891207384 cites W1580401036 @default.
- W2891207384 cites W1757680156 @default.
- W2891207384 cites W1804586948 @default.
- W2891207384 cites W1840167048 @default.
- W2891207384 cites W1914422569 @default.
- W2891207384 cites W1949696217 @default.
- W2891207384 cites W1965488574 @default.
- W2891207384 cites W1971073773 @default.
- W2891207384 cites W1971458100 @default.
- W2891207384 cites W1974508953 @default.
- W2891207384 cites W1976612911 @default.
- W2891207384 cites W1980380307 @default.
- W2891207384 cites W1980844385 @default.
- W2891207384 cites W1983282052 @default.
- W2891207384 cites W1983354967 @default.
- W2891207384 cites W1985466843 @default.
- W2891207384 cites W1985976644 @default.
- W2891207384 cites W1990045070 @default.
- W2891207384 cites W1993365401 @default.
- W2891207384 cites W1997352429 @default.
- W2891207384 cites W2000332387 @default.
- W2891207384 cites W2006132995 @default.
- W2891207384 cites W2008305460 @default.
- W2891207384 cites W2011717356 @default.
- W2891207384 cites W2016562143 @default.
- W2891207384 cites W2017487685 @default.
- W2891207384 cites W2017891202 @default.
- W2891207384 cites W2021417699 @default.
- W2891207384 cites W2021655170 @default.
- W2891207384 cites W2024404113 @default.
- W2891207384 cites W2024596480 @default.
- W2891207384 cites W2025009887 @default.
- W2891207384 cites W2025693418 @default.
- W2891207384 cites W2025855468 @default.
- W2891207384 cites W2031164172 @default.
- W2891207384 cites W2031443209 @default.
- W2891207384 cites W2032225003 @default.
- W2891207384 cites W2032743237 @default.
- W2891207384 cites W2038390827 @default.
- W2891207384 cites W2044696897 @default.
- W2891207384 cites W2045647757 @default.
- W2891207384 cites W2048338212 @default.
- W2891207384 cites W2049488338 @default.
- W2891207384 cites W2049970571 @default.
- W2891207384 cites W2050353495 @default.
- W2891207384 cites W2050595918 @default.
- W2891207384 cites W2058748486 @default.
- W2891207384 cites W2060962226 @default.
- W2891207384 cites W2066546360 @default.
- W2891207384 cites W2073737430 @default.
- W2891207384 cites W2080810102 @default.
- W2891207384 cites W2082656439 @default.
- W2891207384 cites W2088067571 @default.
- W2891207384 cites W2095577394 @default.
- W2891207384 cites W2096536511 @default.
- W2891207384 cites W2097203767 @default.
- W2891207384 cites W2103085707 @default.
- W2891207384 cites W2105485445 @default.
- W2891207384 cites W2106860188 @default.
- W2891207384 cites W2109604001 @default.
- W2891207384 cites W2109814745 @default.
- W2891207384 cites W2110796274 @default.
- W2891207384 cites W2111044298 @default.
- W2891207384 cites W2112856057 @default.
- W2891207384 cites W2113251506 @default.
- W2891207384 cites W2113690878 @default.
- W2891207384 cites W2114675164 @default.
- W2891207384 cites W2116355527 @default.
- W2891207384 cites W2118387792 @default.
- W2891207384 cites W2118416104 @default.
- W2891207384 cites W2119796063 @default.
- W2891207384 cites W2120434926 @default.
- W2891207384 cites W2121183764 @default.
- W2891207384 cites W2121283450 @default.
- W2891207384 cites W2121608455 @default.
- W2891207384 cites W2122417124 @default.
- W2891207384 cites W2122542480 @default.
- W2891207384 cites W2122778891 @default.
- W2891207384 cites W2123631240 @default.
- W2891207384 cites W2124182468 @default.
- W2891207384 cites W2126020167 @default.
- W2891207384 cites W2127785693 @default.
- W2891207384 cites W2130504395 @default.
- W2891207384 cites W2131549086 @default.
- W2891207384 cites W2133901458 @default.
- W2891207384 cites W2138228242 @default.
- W2891207384 cites W2138266153 @default.
- W2891207384 cites W2140483277 @default.