Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891207696> ?p ?o ?g. }
- W2891207696 abstract "Abstract Leishmaniasis is an endemic parasitic disease, predominantly found in the poor locality of Africa, Asia and Latin America. It is associated with malnutrition, weak immune system of people and their housing locality. At present, it is diagnosed by microscopic identification, molecular and biochemical characterisation or serum analysis for parasitic compounds. In this study, we present a new approach for diagnosing Leishmaniasis using cognitive computing. The Genetic datasets of leishmaniasis are collected from Gene Expression Omnibus database and it’s then processed. The algorithm for training and developing a model, based on the data is prepared and coded using python. The algorithm and their corresponding datasets are integrated using TensorFlow dataframe. A feed forward Artificial Neural Network trained model with multi-layer perceptron is developed as a diagnosing model for Leishmaniasis, using genetic dataset. It is developed using recurrent neural network. The cognitive model of the trained network is interpreted using the maps and mathematical formula of the influencing parameters. The credit of the system is measured using the accuracy, loss and error of the system. This integrated system of the leishmaniasis genetic dataset and neural network proved to be the good choice for diagnosis with higher accuracy and lower error. Through this approach, all records of the data are effectively incorporated into the system. The experimental results of feed forward multilayer perceptron model after normalization; mean square error (219.84), loss function (1.94) and accuracy (85.71%) of the model, shows good fit of model with the process and it could possibly serve as a better solution for diagnosing Leishmaniasis in future, using genetic datasets. The code is available in Github repository: https://github.com/shailzasingh/Machine-Learning-code-for-analyzing-genetic-dataset-in-Leishmaniasis" @default.
- W2891207696 created "2018-09-27" @default.
- W2891207696 creator A5033835937 @default.
- W2891207696 creator A5035434160 @default.
- W2891207696 creator A5085151831 @default.
- W2891207696 date "2018-09-07" @default.
- W2891207696 modified "2023-09-27" @default.
- W2891207696 title "Construction of Feed Forward MultiLayer Perceptron Model For Genetic Dataset in Leishmaniasis Using Cognitive Computing" @default.
- W2891207696 cites W1647162363 @default.
- W2891207696 cites W1971006771 @default.
- W2891207696 cites W2008033461 @default.
- W2891207696 cites W2022876554 @default.
- W2891207696 cites W2063496003 @default.
- W2891207696 cites W2129670230 @default.
- W2891207696 cites W2520345180 @default.
- W2891207696 cites W2568988948 @default.
- W2891207696 cites W2612816431 @default.
- W2891207696 cites W2730411900 @default.
- W2891207696 cites W2730802076 @default.
- W2891207696 cites W2747971139 @default.
- W2891207696 cites W2754942005 @default.
- W2891207696 cites W2755337679 @default.
- W2891207696 cites W2770357778 @default.
- W2891207696 cites W2787948531 @default.
- W2891207696 cites W2789977856 @default.
- W2891207696 cites W2790109047 @default.
- W2891207696 cites W2791441828 @default.
- W2891207696 cites W2792852625 @default.
- W2891207696 cites W2793490331 @default.
- W2891207696 cites W2796301380 @default.
- W2891207696 cites W2800115517 @default.
- W2891207696 cites W2801013643 @default.
- W2891207696 cites W2802914282 @default.
- W2891207696 cites W2806066966 @default.
- W2891207696 cites W2807421526 @default.
- W2891207696 cites W2809651358 @default.
- W2891207696 cites W2810922333 @default.
- W2891207696 cites W2842770841 @default.
- W2891207696 cites W2962949934 @default.
- W2891207696 doi "https://doi.org/10.1101/411363" @default.
- W2891207696 hasPublicationYear "2018" @default.
- W2891207696 type Work @default.
- W2891207696 sameAs 2891207696 @default.
- W2891207696 citedByCount "0" @default.
- W2891207696 crossrefType "posted-content" @default.
- W2891207696 hasAuthorship W2891207696A5033835937 @default.
- W2891207696 hasAuthorship W2891207696A5035434160 @default.
- W2891207696 hasAuthorship W2891207696A5085151831 @default.
- W2891207696 hasBestOaLocation W28912076961 @default.
- W2891207696 hasConcept C105795698 @default.
- W2891207696 hasConcept C119857082 @default.
- W2891207696 hasConcept C124101348 @default.
- W2891207696 hasConcept C138885662 @default.
- W2891207696 hasConcept C139502532 @default.
- W2891207696 hasConcept C139945424 @default.
- W2891207696 hasConcept C153180895 @default.
- W2891207696 hasConcept C154945302 @default.
- W2891207696 hasConcept C155032097 @default.
- W2891207696 hasConcept C179717631 @default.
- W2891207696 hasConcept C203014093 @default.
- W2891207696 hasConcept C2776555147 @default.
- W2891207696 hasConcept C2778702967 @default.
- W2891207696 hasConcept C2779808786 @default.
- W2891207696 hasConcept C33923547 @default.
- W2891207696 hasConcept C41008148 @default.
- W2891207696 hasConcept C41895202 @default.
- W2891207696 hasConcept C50644808 @default.
- W2891207696 hasConcept C60908668 @default.
- W2891207696 hasConcept C71924100 @default.
- W2891207696 hasConcept C8880873 @default.
- W2891207696 hasConceptScore W2891207696C105795698 @default.
- W2891207696 hasConceptScore W2891207696C119857082 @default.
- W2891207696 hasConceptScore W2891207696C124101348 @default.
- W2891207696 hasConceptScore W2891207696C138885662 @default.
- W2891207696 hasConceptScore W2891207696C139502532 @default.
- W2891207696 hasConceptScore W2891207696C139945424 @default.
- W2891207696 hasConceptScore W2891207696C153180895 @default.
- W2891207696 hasConceptScore W2891207696C154945302 @default.
- W2891207696 hasConceptScore W2891207696C155032097 @default.
- W2891207696 hasConceptScore W2891207696C179717631 @default.
- W2891207696 hasConceptScore W2891207696C203014093 @default.
- W2891207696 hasConceptScore W2891207696C2776555147 @default.
- W2891207696 hasConceptScore W2891207696C2778702967 @default.
- W2891207696 hasConceptScore W2891207696C2779808786 @default.
- W2891207696 hasConceptScore W2891207696C33923547 @default.
- W2891207696 hasConceptScore W2891207696C41008148 @default.
- W2891207696 hasConceptScore W2891207696C41895202 @default.
- W2891207696 hasConceptScore W2891207696C50644808 @default.
- W2891207696 hasConceptScore W2891207696C60908668 @default.
- W2891207696 hasConceptScore W2891207696C71924100 @default.
- W2891207696 hasConceptScore W2891207696C8880873 @default.
- W2891207696 hasLocation W28912076961 @default.
- W2891207696 hasOpenAccess W2891207696 @default.
- W2891207696 hasPrimaryLocation W28912076961 @default.
- W2891207696 hasRelatedWork W1571413592 @default.
- W2891207696 hasRelatedWork W1973222304 @default.
- W2891207696 hasRelatedWork W2023924986 @default.
- W2891207696 hasRelatedWork W2169292331 @default.
- W2891207696 hasRelatedWork W2181592048 @default.
- W2891207696 hasRelatedWork W2891207696 @default.