Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891215832> ?p ?o ?g. }
- W2891215832 endingPage "741" @default.
- W2891215832 startingPage "741" @default.
- W2891215832 abstract "Magnesium silicate impregnated onto palm-shell waste activated carbon (PPAC) underwent mild hydrothermal treatment under one-pot synthesis, designated as PPAC-MC. Various impregnation ratios from 25 to 300% of MgSiO3 onto PPAC were tested. High levels of MgSiO3 led to high Cu(II) adsorption capacity. A ratio of 1:1 (PPAC-MS 100) was considered optimum because of its chemical stability in solution. The maximum adsorption capacity of PPAC-MS 100 for Cu(II) obtained by isotherm experiments was 369 mg g−1. The kinetic adsorption data fitted to pseudo-second-order model revealed as chemisorption. Increasing ionic strength reduced Cu(II) adsorption capacity due to the competition effect between Na+ and Cu2+. In addition, PPAC-MS 100 showed sufficient adsorption capacity for the removal of Zn(II), Al(III), Fe(II), Mn(II), and As(V), with adsorption capacities of 373 mg g−1, 244 mg g−1, 234 mg g−1, 562 mg g−1, 191 mg g−1, respectively. Three regeneration studies were also conducted. PPAC-MS was characterized using Fourier Transformed Infrared (FTIR), X-Ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Field Emission Scanning Electron Microscope (FESEM). Overall, PPAC-MS 100 is a competitive adsorbent due to its high sorption capacity and sufficient regeneration rate, while remaining economical through the reuse of palm-shell waste materials." @default.
- W2891215832 created "2018-09-27" @default.
- W2891215832 creator A5017465474 @default.
- W2891215832 creator A5024141388 @default.
- W2891215832 creator A5033569546 @default.
- W2891215832 creator A5045636782 @default.
- W2891215832 creator A5089624618 @default.
- W2891215832 date "2018-09-21" @default.
- W2891215832 modified "2023-10-06" @default.
- W2891215832 title "One Step Hydrothermal Synthesis of Magnesium Silicate Impregnated Palm Shell Waste Activated Carbon for Copper Ion Removal" @default.
- W2891215832 cites W1479959272 @default.
- W2891215832 cites W1898172415 @default.
- W2891215832 cites W1971495954 @default.
- W2891215832 cites W1971899334 @default.
- W2891215832 cites W1975181649 @default.
- W2891215832 cites W1975955524 @default.
- W2891215832 cites W1978199117 @default.
- W2891215832 cites W1978484355 @default.
- W2891215832 cites W1986113254 @default.
- W2891215832 cites W1988472148 @default.
- W2891215832 cites W1992045220 @default.
- W2891215832 cites W1992275053 @default.
- W2891215832 cites W2006660755 @default.
- W2891215832 cites W2007032996 @default.
- W2891215832 cites W2017257213 @default.
- W2891215832 cites W2020298183 @default.
- W2891215832 cites W2032305601 @default.
- W2891215832 cites W2032902557 @default.
- W2891215832 cites W2033581663 @default.
- W2891215832 cites W2034775874 @default.
- W2891215832 cites W2036133324 @default.
- W2891215832 cites W2037553350 @default.
- W2891215832 cites W2037678953 @default.
- W2891215832 cites W2039150620 @default.
- W2891215832 cites W2041930297 @default.
- W2891215832 cites W2043219105 @default.
- W2891215832 cites W2044707172 @default.
- W2891215832 cites W2045703061 @default.
- W2891215832 cites W2047200179 @default.
- W2891215832 cites W2048931067 @default.
- W2891215832 cites W2049707706 @default.
- W2891215832 cites W2054601385 @default.
- W2891215832 cites W2056984390 @default.
- W2891215832 cites W2062752338 @default.
- W2891215832 cites W2072564680 @default.
- W2891215832 cites W2078277285 @default.
- W2891215832 cites W2078552737 @default.
- W2891215832 cites W2106414543 @default.
- W2891215832 cites W2122170260 @default.
- W2891215832 cites W2145146431 @default.
- W2891215832 cites W2153821553 @default.
- W2891215832 cites W2162744695 @default.
- W2891215832 cites W2175417372 @default.
- W2891215832 cites W2193463114 @default.
- W2891215832 cites W2238473370 @default.
- W2891215832 cites W2261771820 @default.
- W2891215832 cites W2277805971 @default.
- W2891215832 cites W2289519730 @default.
- W2891215832 cites W2293505008 @default.
- W2891215832 cites W2318841192 @default.
- W2891215832 cites W2332661139 @default.
- W2891215832 cites W2398658523 @default.
- W2891215832 cites W2505410470 @default.
- W2891215832 cites W2523791748 @default.
- W2891215832 cites W2561151193 @default.
- W2891215832 cites W2583537936 @default.
- W2891215832 cites W2595575586 @default.
- W2891215832 cites W2731507767 @default.
- W2891215832 cites W2767657679 @default.
- W2891215832 cites W2767805398 @default.
- W2891215832 cites W2768493099 @default.
- W2891215832 cites W2804322128 @default.
- W2891215832 cites W4382132765 @default.
- W2891215832 doi "https://doi.org/10.3390/met8100741" @default.
- W2891215832 hasPublicationYear "2018" @default.
- W2891215832 type Work @default.
- W2891215832 sameAs 2891215832 @default.
- W2891215832 citedByCount "4" @default.
- W2891215832 countsByYear W28912158322020 @default.
- W2891215832 countsByYear W28912158322022 @default.
- W2891215832 countsByYear W28912158322023 @default.
- W2891215832 crossrefType "journal-article" @default.
- W2891215832 hasAuthorship W2891215832A5017465474 @default.
- W2891215832 hasAuthorship W2891215832A5024141388 @default.
- W2891215832 hasAuthorship W2891215832A5033569546 @default.
- W2891215832 hasAuthorship W2891215832A5045636782 @default.
- W2891215832 hasAuthorship W2891215832A5089624618 @default.
- W2891215832 hasBestOaLocation W28912158321 @default.
- W2891215832 hasConcept C127413603 @default.
- W2891215832 hasConcept C13965031 @default.
- W2891215832 hasConcept C150394285 @default.
- W2891215832 hasConcept C160892712 @default.
- W2891215832 hasConcept C175708663 @default.
- W2891215832 hasConcept C178790620 @default.
- W2891215832 hasConcept C185592680 @default.
- W2891215832 hasConcept C192562407 @default.
- W2891215832 hasConcept C2779647737 @default.
- W2891215832 hasConcept C33790079 @default.