Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891230170> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2891230170 endingPage "661" @default.
- W2891230170 startingPage "649" @default.
- W2891230170 abstract "We investigate the use of deep neural network (DNN) models for energy optimization under performance constraints in chip multiprocessor systems. We introduce a dynamic energy management algorithm implemented in three phases. In the first phase, training data is collected by running several selected instrumented benchmarks. A training data point represents a pair of values of cores’ workload characteristics and of optimal voltage/frequency (V/F) pairs. This phase employs Kalman filtering for workload prediction and an efficient heuristic algorithm based on dynamic voltage and frequency scaling. The second phase represents the training process of the DNN model. In the last phase, the DNN model is used to directly identify V/F pairs that can achieve lower energy consumption without performance degradation beyond the acceptable threshold set by the user. Simulation results on 16 and 64 core network-on-chip based architectures demonstrate that the proposed approach can achieve up to 55 percent energy reduction for 10 percent performance degradation constraints. In addition, the proposed DNN approach is compared against existing approaches based on reinforcement learning and Kalman filtering and found that it provides average improvements in energy-delay-product (EDP) of 6.3 and 6 percent for the 16 core architecture and of 7.4 and 5.5 percent for the 64 core architecture." @default.
- W2891230170 created "2018-09-27" @default.
- W2891230170 creator A5024593560 @default.
- W2891230170 creator A5040471931 @default.
- W2891230170 creator A5086561910 @default.
- W2891230170 date "2018-10-01" @default.
- W2891230170 modified "2023-09-24" @default.
- W2891230170 title "Dynamic Energy Optimization in Chip Multiprocessors Using Deep Neural Networks" @default.
- W2891230170 cites W1975844231 @default.
- W2891230170 cites W2008093830 @default.
- W2891230170 cites W2027177485 @default.
- W2891230170 cites W2034062945 @default.
- W2891230170 cites W2052391022 @default.
- W2891230170 cites W2067507621 @default.
- W2891230170 cites W2096875061 @default.
- W2891230170 cites W2113863926 @default.
- W2891230170 cites W2136325278 @default.
- W2891230170 cites W2161036704 @default.
- W2891230170 cites W2164909457 @default.
- W2891230170 cites W2170382128 @default.
- W2891230170 cites W2580198630 @default.
- W2891230170 cites W2619632555 @default.
- W2891230170 cites W2745569017 @default.
- W2891230170 cites W2963681519 @default.
- W2891230170 cites W4253684726 @default.
- W2891230170 doi "https://doi.org/10.1109/tmscs.2018.2870438" @default.
- W2891230170 hasPublicationYear "2018" @default.
- W2891230170 type Work @default.
- W2891230170 sameAs 2891230170 @default.
- W2891230170 citedByCount "6" @default.
- W2891230170 countsByYear W28912301702019 @default.
- W2891230170 countsByYear W28912301702020 @default.
- W2891230170 countsByYear W28912301702021 @default.
- W2891230170 countsByYear W28912301702022 @default.
- W2891230170 crossrefType "journal-article" @default.
- W2891230170 hasAuthorship W2891230170A5024593560 @default.
- W2891230170 hasAuthorship W2891230170A5040471931 @default.
- W2891230170 hasAuthorship W2891230170A5086561910 @default.
- W2891230170 hasConcept C118524514 @default.
- W2891230170 hasConcept C154945302 @default.
- W2891230170 hasConcept C165005293 @default.
- W2891230170 hasConcept C173608175 @default.
- W2891230170 hasConcept C41008148 @default.
- W2891230170 hasConcept C50644808 @default.
- W2891230170 hasConcept C76155785 @default.
- W2891230170 hasConceptScore W2891230170C118524514 @default.
- W2891230170 hasConceptScore W2891230170C154945302 @default.
- W2891230170 hasConceptScore W2891230170C165005293 @default.
- W2891230170 hasConceptScore W2891230170C173608175 @default.
- W2891230170 hasConceptScore W2891230170C41008148 @default.
- W2891230170 hasConceptScore W2891230170C50644808 @default.
- W2891230170 hasConceptScore W2891230170C76155785 @default.
- W2891230170 hasIssue "4" @default.
- W2891230170 hasLocation W28912301701 @default.
- W2891230170 hasOpenAccess W2891230170 @default.
- W2891230170 hasPrimaryLocation W28912301701 @default.
- W2891230170 hasRelatedWork W1491899005 @default.
- W2891230170 hasRelatedWork W1604898313 @default.
- W2891230170 hasRelatedWork W1969828050 @default.
- W2891230170 hasRelatedWork W1997145140 @default.
- W2891230170 hasRelatedWork W2034384303 @default.
- W2891230170 hasRelatedWork W2117014006 @default.
- W2891230170 hasRelatedWork W2140418760 @default.
- W2891230170 hasRelatedWork W2164287667 @default.
- W2891230170 hasRelatedWork W2372170743 @default.
- W2891230170 hasRelatedWork W4233815414 @default.
- W2891230170 hasVolume "4" @default.
- W2891230170 isParatext "false" @default.
- W2891230170 isRetracted "false" @default.
- W2891230170 magId "2891230170" @default.
- W2891230170 workType "article" @default.