Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891241963> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2891241963 abstract "Due to the complex and inhomogeneous structure of biological tissues, the analysis of imaging data collected with various optical biopsy methods is often complicated and time consuming. The major challenge here is to understand the peculiarities of light propagation and link it with advanced image/data classification pipelines. This presentation considers the application of the novel Artificial Intelligence (AI) based methods to the inverse problem of light transport in scattering media such as human skin. A spectral image classification pipeline based on Artificial Neural Networks (ANNs) has been developed by implementing and training several configurations of ANNs classifiers that fit for the scattering and absorption properties of the tissues. The training of the ANNs has been performed by the further developed unified Monte Carlo-based computational framework for light transport in scattering media.The hyperspectral data is acquired at each pixel as a function of time, by varying the illumination/detection wavelength and polarization of light. The results of nearly real-time chromophore mappings for parameters such as distributions of melanin, blood vessels, oxygenation, simulation of BSSRDFs, reflectance spectra of human tissues, corresponding colours and 3D rendering examples of human skin appearance will be presented and compared with the exact analytical solutions, phantom studies, traditional diffuse reflectance spectroscopic point measurements and advanced Spatial Frequency Domain Imaging (SFDI) technique.Computer simulation and training are accelerated by parallel computing on Graphics Processing Units (GPUs) using Compute Unified Device Architecture (CUDA) and Cloud-based environment. Open-source machine learning frameworks (e.g. Tensorflow) are used to measure and validate each ANN’s performance." @default.
- W2891241963 created "2018-09-27" @default.
- W2891241963 creator A5002652539 @default.
- W2891241963 creator A5026847382 @default.
- W2891241963 creator A5064638062 @default.
- W2891241963 creator A5065432766 @default.
- W2891241963 date "2018-09-17" @default.
- W2891241963 modified "2023-10-11" @default.
- W2891241963 title "Development of an inverse approach for the characterization of in-vivo optical properties of human skin based on artificial neural networks (Conference Presentation)" @default.
- W2891241963 doi "https://doi.org/10.1117/12.2320814" @default.
- W2891241963 hasPublicationYear "2018" @default.
- W2891241963 type Work @default.
- W2891241963 sameAs 2891241963 @default.
- W2891241963 citedByCount "0" @default.
- W2891241963 crossrefType "proceedings-article" @default.
- W2891241963 hasAuthorship W2891241963A5002652539 @default.
- W2891241963 hasAuthorship W2891241963A5026847382 @default.
- W2891241963 hasAuthorship W2891241963A5064638062 @default.
- W2891241963 hasAuthorship W2891241963A5065432766 @default.
- W2891241963 hasConcept C105795698 @default.
- W2891241963 hasConcept C108583219 @default.
- W2891241963 hasConcept C154945302 @default.
- W2891241963 hasConcept C19499675 @default.
- W2891241963 hasConcept C205711294 @default.
- W2891241963 hasConcept C31972630 @default.
- W2891241963 hasConcept C33923547 @default.
- W2891241963 hasConcept C41008148 @default.
- W2891241963 hasConcept C50644808 @default.
- W2891241963 hasConceptScore W2891241963C105795698 @default.
- W2891241963 hasConceptScore W2891241963C108583219 @default.
- W2891241963 hasConceptScore W2891241963C154945302 @default.
- W2891241963 hasConceptScore W2891241963C19499675 @default.
- W2891241963 hasConceptScore W2891241963C205711294 @default.
- W2891241963 hasConceptScore W2891241963C31972630 @default.
- W2891241963 hasConceptScore W2891241963C33923547 @default.
- W2891241963 hasConceptScore W2891241963C41008148 @default.
- W2891241963 hasConceptScore W2891241963C50644808 @default.
- W2891241963 hasLocation W28912419631 @default.
- W2891241963 hasOpenAccess W2891241963 @default.
- W2891241963 hasPrimaryLocation W28912419631 @default.
- W2891241963 hasRelatedWork W1503414886 @default.
- W2891241963 hasRelatedWork W1863533157 @default.
- W2891241963 hasRelatedWork W2048402902 @default.
- W2891241963 hasRelatedWork W2087353037 @default.
- W2891241963 hasRelatedWork W2143214896 @default.
- W2891241963 hasRelatedWork W2740010476 @default.
- W2891241963 hasRelatedWork W2773120646 @default.
- W2891241963 hasRelatedWork W2898044248 @default.
- W2891241963 hasRelatedWork W88163655 @default.
- W2891241963 hasRelatedWork W3182299699 @default.
- W2891241963 isParatext "false" @default.
- W2891241963 isRetracted "false" @default.
- W2891241963 magId "2891241963" @default.
- W2891241963 workType "article" @default.