Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891246203> ?p ?o ?g. }
- W2891246203 endingPage "759" @default.
- W2891246203 startingPage "747" @default.
- W2891246203 abstract "In the visual Internet of Things (VIoT), imaging sensors must achieve a balance between limited bandwidth and useful information when images contain heavy noise. In this paper, we address the problem of removing heavy noise and propose a novel hierarchical extreme learning machine-based image denoising network, which comprises a sparse auto-encoder and a supervised regression. Due to the fast training of a hierarchical extreme learning machine, an effective image denoising system that is robust for various noise levels can be trained more efficiently than other denoising methods, using a deep neural network. Our proposed framework also contains a non-local aggregation procedure that aims to fine-tune noise reduction according to structural similarity. Compared to the compression ratio in noisy images, the compression ratio of denoised images can be dramatically improved. Therefore, the method can achieve a low communication cost for data interactions in the VIoT. Experimental studies on images, including both hand-written digits and natural scenes, have demonstrated that the proposed technique achieves excellent performance in suppressing heavy noise. Further, it greatly reduces the training time, and outperforms other state-of-the-art approaches in terms of denoising indexes for the peak signal-to-noise ratio (PSNR) or the structural similarity index (SSIM)." @default.
- W2891246203 created "2018-09-27" @default.
- W2891246203 creator A5008497202 @default.
- W2891246203 creator A5014867902 @default.
- W2891246203 creator A5022583120 @default.
- W2891246203 creator A5028529375 @default.
- W2891246203 creator A5069849278 @default.
- W2891246203 creator A5072670483 @default.
- W2891246203 creator A5086010894 @default.
- W2891246203 date "2019-01-01" @default.
- W2891246203 modified "2023-10-14" @default.
- W2891246203 title "Hierarchical extreme learning machine based image denoising network for visual Internet of Things" @default.
- W2891246203 cites W1522271611 @default.
- W2891246203 cites W1649364915 @default.
- W2891246203 cites W1964394948 @default.
- W2891246203 cites W1973207753 @default.
- W2891246203 cites W1977295820 @default.
- W2891246203 cites W1988463242 @default.
- W2891246203 cites W2003802155 @default.
- W2891246203 cites W2014184717 @default.
- W2891246203 cites W2015861736 @default.
- W2891246203 cites W2017399967 @default.
- W2891246203 cites W2026131661 @default.
- W2891246203 cites W2033245860 @default.
- W2891246203 cites W2035026907 @default.
- W2891246203 cites W2037133587 @default.
- W2891246203 cites W2037227137 @default.
- W2891246203 cites W2052842899 @default.
- W2891246203 cites W2056370875 @default.
- W2891246203 cites W2056758595 @default.
- W2891246203 cites W2088900648 @default.
- W2891246203 cites W2091563134 @default.
- W2891246203 cites W2105119246 @default.
- W2891246203 cites W2111072639 @default.
- W2891246203 cites W2112796928 @default.
- W2891246203 cites W2121971770 @default.
- W2891246203 cites W2130325614 @default.
- W2891246203 cites W2141695047 @default.
- W2891246203 cites W2150025528 @default.
- W2891246203 cites W2153663612 @default.
- W2891246203 cites W2154249783 @default.
- W2891246203 cites W2158054309 @default.
- W2891246203 cites W2204402482 @default.
- W2891246203 cites W2242218935 @default.
- W2891246203 cites W2280304536 @default.
- W2891246203 cites W2301541953 @default.
- W2891246203 cites W2418020448 @default.
- W2891246203 cites W2737565623 @default.
- W2891246203 cites W2751736113 @default.
- W2891246203 cites W2766823323 @default.
- W2891246203 cites W2805107728 @default.
- W2891246203 cites W2808420356 @default.
- W2891246203 cites W2546589017 @default.
- W2891246203 doi "https://doi.org/10.1016/j.asoc.2018.08.046" @default.
- W2891246203 hasPublicationYear "2019" @default.
- W2891246203 type Work @default.
- W2891246203 sameAs 2891246203 @default.
- W2891246203 citedByCount "15" @default.
- W2891246203 countsByYear W28912462032019 @default.
- W2891246203 countsByYear W28912462032020 @default.
- W2891246203 countsByYear W28912462032021 @default.
- W2891246203 countsByYear W28912462032022 @default.
- W2891246203 countsByYear W28912462032023 @default.
- W2891246203 crossrefType "journal-article" @default.
- W2891246203 hasAuthorship W2891246203A5008497202 @default.
- W2891246203 hasAuthorship W2891246203A5014867902 @default.
- W2891246203 hasAuthorship W2891246203A5022583120 @default.
- W2891246203 hasAuthorship W2891246203A5028529375 @default.
- W2891246203 hasAuthorship W2891246203A5069849278 @default.
- W2891246203 hasAuthorship W2891246203A5072670483 @default.
- W2891246203 hasAuthorship W2891246203A5086010894 @default.
- W2891246203 hasConcept C115961682 @default.
- W2891246203 hasConcept C119857082 @default.
- W2891246203 hasConcept C153180895 @default.
- W2891246203 hasConcept C154945302 @default.
- W2891246203 hasConcept C163294075 @default.
- W2891246203 hasConcept C2780150128 @default.
- W2891246203 hasConcept C31972630 @default.
- W2891246203 hasConcept C41008148 @default.
- W2891246203 hasConcept C50644808 @default.
- W2891246203 hasConcept C99498987 @default.
- W2891246203 hasConceptScore W2891246203C115961682 @default.
- W2891246203 hasConceptScore W2891246203C119857082 @default.
- W2891246203 hasConceptScore W2891246203C153180895 @default.
- W2891246203 hasConceptScore W2891246203C154945302 @default.
- W2891246203 hasConceptScore W2891246203C163294075 @default.
- W2891246203 hasConceptScore W2891246203C2780150128 @default.
- W2891246203 hasConceptScore W2891246203C31972630 @default.
- W2891246203 hasConceptScore W2891246203C41008148 @default.
- W2891246203 hasConceptScore W2891246203C50644808 @default.
- W2891246203 hasConceptScore W2891246203C99498987 @default.
- W2891246203 hasFunder F4320321001 @default.
- W2891246203 hasFunder F4320332161 @default.
- W2891246203 hasLocation W28912462031 @default.
- W2891246203 hasOpenAccess W2891246203 @default.
- W2891246203 hasPrimaryLocation W28912462031 @default.
- W2891246203 hasRelatedWork W1525510058 @default.
- W2891246203 hasRelatedWork W2130228941 @default.