Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891253216> ?p ?o ?g. }
- W2891253216 endingPage "133" @default.
- W2891253216 startingPage "125" @default.
- W2891253216 abstract "Automated Gleason grading is an important preliminary step for quantitative histopathological feature extraction. Different from the traditional task of classifying small pre-selected homogeneous regions, semantic segmentation provides pixel-wise Gleason predictions across an entire slide. Deep learning-based segmentation models can automatically learn visual semantics from data, which alleviates the need for feature engineering. However, performance of deep learning models is limited by the scarcity of large-scale fully annotated datasets, which can be both expensive and time-consuming to create. One way to address this problem is to leverage external weakly labeled datasets to augment models trained on the limited data. In this paper, we developed an expectation maximization-based approach constrained by an approximated prior distribution in order to extract useful representations from a large number of weakly labeled images generated from low-magnification annotations. This method was utilized to improve the performance of a model trained on a limited fully annotated dataset. Our semi-supervised approach trained with 135 fully annotated and 1800 weakly annotated tiles achieved a mean Jaccard Index of 49.5% on an independent test set, which was 14% higher than the initial model trained only on the fully annotated dataset." @default.
- W2891253216 created "2018-09-27" @default.
- W2891253216 creator A5001518045 @default.
- W2891253216 creator A5001751044 @default.
- W2891253216 creator A5003259313 @default.
- W2891253216 creator A5012620880 @default.
- W2891253216 creator A5021036637 @default.
- W2891253216 creator A5029456122 @default.
- W2891253216 creator A5060130342 @default.
- W2891253216 date "2018-11-01" @default.
- W2891253216 modified "2023-10-18" @default.
- W2891253216 title "An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies" @default.
- W2891253216 cites W1820655337 @default.
- W2891253216 cites W1898703532 @default.
- W2891253216 cites W1938425378 @default.
- W2891253216 cites W1979332931 @default.
- W2891253216 cites W1993760967 @default.
- W2891253216 cites W2030041075 @default.
- W2891253216 cites W2031489346 @default.
- W2891253216 cites W2037227137 @default.
- W2891253216 cites W2058792133 @default.
- W2891253216 cites W2071428121 @default.
- W2891253216 cites W2098140880 @default.
- W2891253216 cites W2110119381 @default.
- W2891253216 cites W2117395293 @default.
- W2891253216 cites W2129112648 @default.
- W2891253216 cites W2168033859 @default.
- W2891253216 cites W2235523093 @default.
- W2891253216 cites W2237393532 @default.
- W2891253216 cites W2252728384 @default.
- W2891253216 cites W2269649163 @default.
- W2891253216 cites W2302302587 @default.
- W2891253216 cites W2395611524 @default.
- W2891253216 cites W2412782625 @default.
- W2891253216 cites W2523396458 @default.
- W2891253216 cites W2786974903 @default.
- W2891253216 cites W2919115771 @default.
- W2891253216 cites W2963881378 @default.
- W2891253216 cites W3106105822 @default.
- W2891253216 cites W4254784140 @default.
- W2891253216 cites W4292080463 @default.
- W2891253216 cites W59164597 @default.
- W2891253216 doi "https://doi.org/10.1016/j.compmedimag.2018.08.003" @default.
- W2891253216 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6173982" @default.
- W2891253216 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30243216" @default.
- W2891253216 hasPublicationYear "2018" @default.
- W2891253216 type Work @default.
- W2891253216 sameAs 2891253216 @default.
- W2891253216 citedByCount "47" @default.
- W2891253216 countsByYear W28912532162019 @default.
- W2891253216 countsByYear W28912532162020 @default.
- W2891253216 countsByYear W28912532162021 @default.
- W2891253216 countsByYear W28912532162022 @default.
- W2891253216 countsByYear W28912532162023 @default.
- W2891253216 crossrefType "journal-article" @default.
- W2891253216 hasAuthorship W2891253216A5001518045 @default.
- W2891253216 hasAuthorship W2891253216A5001751044 @default.
- W2891253216 hasAuthorship W2891253216A5003259313 @default.
- W2891253216 hasAuthorship W2891253216A5012620880 @default.
- W2891253216 hasAuthorship W2891253216A5021036637 @default.
- W2891253216 hasAuthorship W2891253216A5029456122 @default.
- W2891253216 hasAuthorship W2891253216A5060130342 @default.
- W2891253216 hasBestOaLocation W28912532161 @default.
- W2891253216 hasConcept C108583219 @default.
- W2891253216 hasConcept C119857082 @default.
- W2891253216 hasConcept C153083717 @default.
- W2891253216 hasConcept C153180895 @default.
- W2891253216 hasConcept C154945302 @default.
- W2891253216 hasConcept C169903167 @default.
- W2891253216 hasConcept C203519979 @default.
- W2891253216 hasConcept C41008148 @default.
- W2891253216 hasConcept C89600930 @default.
- W2891253216 hasConceptScore W2891253216C108583219 @default.
- W2891253216 hasConceptScore W2891253216C119857082 @default.
- W2891253216 hasConceptScore W2891253216C153083717 @default.
- W2891253216 hasConceptScore W2891253216C153180895 @default.
- W2891253216 hasConceptScore W2891253216C154945302 @default.
- W2891253216 hasConceptScore W2891253216C169903167 @default.
- W2891253216 hasConceptScore W2891253216C203519979 @default.
- W2891253216 hasConceptScore W2891253216C41008148 @default.
- W2891253216 hasConceptScore W2891253216C89600930 @default.
- W2891253216 hasLocation W28912532161 @default.
- W2891253216 hasLocation W28912532162 @default.
- W2891253216 hasLocation W28912532163 @default.
- W2891253216 hasLocation W28912532164 @default.
- W2891253216 hasLocation W28912532165 @default.
- W2891253216 hasOpenAccess W2891253216 @default.
- W2891253216 hasPrimaryLocation W28912532161 @default.
- W2891253216 hasRelatedWork W2628526247 @default.
- W2891253216 hasRelatedWork W2913569734 @default.
- W2891253216 hasRelatedWork W2997155179 @default.
- W2891253216 hasRelatedWork W3022576529 @default.
- W2891253216 hasRelatedWork W3099765033 @default.
- W2891253216 hasRelatedWork W3127229356 @default.
- W2891253216 hasRelatedWork W4254879869 @default.
- W2891253216 hasRelatedWork W4315434538 @default.
- W2891253216 hasRelatedWork W4385154950 @default.
- W2891253216 hasRelatedWork W2000801317 @default.