Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891260276> ?p ?o ?g. }
- W2891260276 endingPage "615" @default.
- W2891260276 startingPage "605" @default.
- W2891260276 abstract "Abstract Permeability prediction has long been one of the most important and difficult tasks of reservoir characterization , especially for tight sands with strong heterogeneity. A unified model is important for the un-cored wells and can reduce a lot of work in practice. In this case, we are going to establish a field-scale unified permeability model for the tight gas sands of the Middle Jurassic Shaximiao Formation in the Western Sichuan Basin, China. The tight gas sands are isolated channel sands with strong heterogeneity. In addition to the porosity, well logs are also selected as the input feature to help to derive the non-linear relations. We choose simple linear regression (SLR) using porosity, multiple linear regression (MLR), multiple-layer perceptron (MLR) and support vector regression (SVR) using multiple input features as our machine learning methods for this task. For the non-linear methods, MLP and SVR, we present how to decide their key parameters based on the theoretical analysis and experiments to keep their generalization capability. Finally, the results show that the non-linear MLP and SVR outperform the linear SLR and MLR for the unified permeability model. The blind well average performance of MLP and SVR improves about 50% on R2 and decrease about 30% on MARE than MLR." @default.
- W2891260276 created "2018-09-27" @default.
- W2891260276 creator A5033327049 @default.
- W2891260276 creator A5042175903 @default.
- W2891260276 creator A5063023682 @default.
- W2891260276 creator A5065760249 @default.
- W2891260276 creator A5074415234 @default.
- W2891260276 creator A5075235553 @default.
- W2891260276 date "2018-12-01" @default.
- W2891260276 modified "2023-09-23" @default.
- W2891260276 title "Permeability prediction of isolated channel sands using machine learning" @default.
- W2891260276 cites W1964357740 @default.
- W2891260276 cites W1966138019 @default.
- W2891260276 cites W1966633542 @default.
- W2891260276 cites W1972188968 @default.
- W2891260276 cites W1981278204 @default.
- W2891260276 cites W1986517446 @default.
- W2891260276 cites W1995341919 @default.
- W2891260276 cites W1997457799 @default.
- W2891260276 cites W2029108085 @default.
- W2891260276 cites W2048820530 @default.
- W2891260276 cites W2050277054 @default.
- W2891260276 cites W2055178030 @default.
- W2891260276 cites W2057188495 @default.
- W2891260276 cites W2058257812 @default.
- W2891260276 cites W2061069258 @default.
- W2891260276 cites W2062219011 @default.
- W2891260276 cites W2070329202 @default.
- W2891260276 cites W2074009903 @default.
- W2891260276 cites W2075089536 @default.
- W2891260276 cites W2075198493 @default.
- W2891260276 cites W2082184476 @default.
- W2891260276 cites W2083424082 @default.
- W2891260276 cites W2093990067 @default.
- W2891260276 cites W2133015712 @default.
- W2891260276 cites W2234488275 @default.
- W2891260276 cites W2245188166 @default.
- W2891260276 cites W2273843512 @default.
- W2891260276 cites W2323462082 @default.
- W2891260276 cites W2395047926 @default.
- W2891260276 cites W2468203014 @default.
- W2891260276 cites W2476695889 @default.
- W2891260276 cites W2488314661 @default.
- W2891260276 cites W2504525813 @default.
- W2891260276 cites W2531893391 @default.
- W2891260276 cites W2562289992 @default.
- W2891260276 cites W2590877170 @default.
- W2891260276 cites W2609386560 @default.
- W2891260276 cites W2685814263 @default.
- W2891260276 cites W2702787849 @default.
- W2891260276 cites W2741984561 @default.
- W2891260276 cites W2744272590 @default.
- W2891260276 cites W2790229093 @default.
- W2891260276 cites W2888525203 @default.
- W2891260276 cites W4234268786 @default.
- W2891260276 cites W4239510810 @default.
- W2891260276 cites W4244300305 @default.
- W2891260276 doi "https://doi.org/10.1016/j.jappgeo.2018.09.011" @default.
- W2891260276 hasPublicationYear "2018" @default.
- W2891260276 type Work @default.
- W2891260276 sameAs 2891260276 @default.
- W2891260276 citedByCount "32" @default.
- W2891260276 countsByYear W28912602762019 @default.
- W2891260276 countsByYear W28912602762020 @default.
- W2891260276 countsByYear W28912602762021 @default.
- W2891260276 countsByYear W28912602762022 @default.
- W2891260276 countsByYear W28912602762023 @default.
- W2891260276 crossrefType "journal-article" @default.
- W2891260276 hasAuthorship W2891260276A5033327049 @default.
- W2891260276 hasAuthorship W2891260276A5042175903 @default.
- W2891260276 hasAuthorship W2891260276A5063023682 @default.
- W2891260276 hasAuthorship W2891260276A5065760249 @default.
- W2891260276 hasAuthorship W2891260276A5074415234 @default.
- W2891260276 hasAuthorship W2891260276A5075235553 @default.
- W2891260276 hasConcept C120882062 @default.
- W2891260276 hasConcept C127313418 @default.
- W2891260276 hasConcept C187320778 @default.
- W2891260276 hasConcept C41625074 @default.
- W2891260276 hasConcept C54355233 @default.
- W2891260276 hasConcept C78762247 @default.
- W2891260276 hasConcept C86803240 @default.
- W2891260276 hasConceptScore W2891260276C120882062 @default.
- W2891260276 hasConceptScore W2891260276C127313418 @default.
- W2891260276 hasConceptScore W2891260276C187320778 @default.
- W2891260276 hasConceptScore W2891260276C41625074 @default.
- W2891260276 hasConceptScore W2891260276C54355233 @default.
- W2891260276 hasConceptScore W2891260276C78762247 @default.
- W2891260276 hasConceptScore W2891260276C86803240 @default.
- W2891260276 hasFunder F4320321001 @default.
- W2891260276 hasLocation W28912602761 @default.
- W2891260276 hasOpenAccess W2891260276 @default.
- W2891260276 hasPrimaryLocation W28912602761 @default.
- W2891260276 hasRelatedWork W1986629667 @default.
- W2891260276 hasRelatedWork W1987656607 @default.
- W2891260276 hasRelatedWork W2032411788 @default.
- W2891260276 hasRelatedWork W2073744175 @default.
- W2891260276 hasRelatedWork W2161960613 @default.
- W2891260276 hasRelatedWork W2331156613 @default.