Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891266422> ?p ?o ?g. }
- W2891266422 endingPage "456" @default.
- W2891266422 startingPage "449" @default.
- W2891266422 abstract "Medical image analysis practitioners have embraced big data methodologies. This has created a need for large annotated datasets. The source of big data is typically large image collections and clinical reports recorded for these images. In many cases, however, building algorithms aimed at segmentation and detection of disease requires a training dataset with markings of the areas of interest on the image that match with the described anomalies. This process of annotation is expensive and needs the involvement of clinicians. In this work we propose two separate deep neural network architectures for automatic marking of a region of interest (ROI) on the image best representing a finding location, given a textual report or a set of keywords. One architecture consists of LSTM and CNN components and is trained end to end with images, matching text, and markings of ROIs for those images. The output layer estimates the coordinates of the vertices of a polygonal region. The second architecture uses a network pre-trained on a large dataset of the same image types for learning feature representations of the findings of interest. We show that for a variety of findings from chest X-ray images, both proposed architectures learn to estimate the ROI, as validated by clinical annotations. There is a clear advantage obtained from the architecture with pre-trained imaging network. The centroids of the ROIs marked by this network were on average at a distance equivalent to 5.1% of the image width from the centroids of the ground truth ROIs." @default.
- W2891266422 created "2018-09-27" @default.
- W2891266422 creator A5018249303 @default.
- W2891266422 creator A5027868086 @default.
- W2891266422 creator A5057284370 @default.
- W2891266422 creator A5082167522 @default.
- W2891266422 creator A5083796201 @default.
- W2891266422 date "2018-01-01" @default.
- W2891266422 modified "2023-09-25" @default.
- W2891266422 title "Bimodal Network Architectures for Automatic Generation of Image Annotation from Text" @default.
- W2891266422 cites W1907845728 @default.
- W2891266422 cites W2152772232 @default.
- W2891266422 cites W2168571645 @default.
- W2891266422 cites W4237538835 @default.
- W2891266422 doi "https://doi.org/10.1007/978-3-030-00928-1_51" @default.
- W2891266422 hasPublicationYear "2018" @default.
- W2891266422 type Work @default.
- W2891266422 sameAs 2891266422 @default.
- W2891266422 citedByCount "18" @default.
- W2891266422 countsByYear W28912664222019 @default.
- W2891266422 countsByYear W28912664222020 @default.
- W2891266422 countsByYear W28912664222021 @default.
- W2891266422 countsByYear W28912664222022 @default.
- W2891266422 countsByYear W28912664222023 @default.
- W2891266422 crossrefType "book-chapter" @default.
- W2891266422 hasAuthorship W2891266422A5018249303 @default.
- W2891266422 hasAuthorship W2891266422A5027868086 @default.
- W2891266422 hasAuthorship W2891266422A5057284370 @default.
- W2891266422 hasAuthorship W2891266422A5082167522 @default.
- W2891266422 hasAuthorship W2891266422A5083796201 @default.
- W2891266422 hasBestOaLocation W28912664222 @default.
- W2891266422 hasConcept C105795698 @default.
- W2891266422 hasConcept C108583219 @default.
- W2891266422 hasConcept C115961682 @default.
- W2891266422 hasConcept C124504099 @default.
- W2891266422 hasConcept C138885662 @default.
- W2891266422 hasConcept C146599234 @default.
- W2891266422 hasConcept C146849305 @default.
- W2891266422 hasConcept C153180895 @default.
- W2891266422 hasConcept C154945302 @default.
- W2891266422 hasConcept C165064840 @default.
- W2891266422 hasConcept C177264268 @default.
- W2891266422 hasConcept C193415008 @default.
- W2891266422 hasConcept C19609008 @default.
- W2891266422 hasConcept C199360897 @default.
- W2891266422 hasConcept C199579030 @default.
- W2891266422 hasConcept C2776321320 @default.
- W2891266422 hasConcept C2776401178 @default.
- W2891266422 hasConcept C31972630 @default.
- W2891266422 hasConcept C33923547 @default.
- W2891266422 hasConcept C38652104 @default.
- W2891266422 hasConcept C41008148 @default.
- W2891266422 hasConcept C41895202 @default.
- W2891266422 hasConcept C50644808 @default.
- W2891266422 hasConcept C89600930 @default.
- W2891266422 hasConcept C9417928 @default.
- W2891266422 hasConceptScore W2891266422C105795698 @default.
- W2891266422 hasConceptScore W2891266422C108583219 @default.
- W2891266422 hasConceptScore W2891266422C115961682 @default.
- W2891266422 hasConceptScore W2891266422C124504099 @default.
- W2891266422 hasConceptScore W2891266422C138885662 @default.
- W2891266422 hasConceptScore W2891266422C146599234 @default.
- W2891266422 hasConceptScore W2891266422C146849305 @default.
- W2891266422 hasConceptScore W2891266422C153180895 @default.
- W2891266422 hasConceptScore W2891266422C154945302 @default.
- W2891266422 hasConceptScore W2891266422C165064840 @default.
- W2891266422 hasConceptScore W2891266422C177264268 @default.
- W2891266422 hasConceptScore W2891266422C193415008 @default.
- W2891266422 hasConceptScore W2891266422C19609008 @default.
- W2891266422 hasConceptScore W2891266422C199360897 @default.
- W2891266422 hasConceptScore W2891266422C199579030 @default.
- W2891266422 hasConceptScore W2891266422C2776321320 @default.
- W2891266422 hasConceptScore W2891266422C2776401178 @default.
- W2891266422 hasConceptScore W2891266422C31972630 @default.
- W2891266422 hasConceptScore W2891266422C33923547 @default.
- W2891266422 hasConceptScore W2891266422C38652104 @default.
- W2891266422 hasConceptScore W2891266422C41008148 @default.
- W2891266422 hasConceptScore W2891266422C41895202 @default.
- W2891266422 hasConceptScore W2891266422C50644808 @default.
- W2891266422 hasConceptScore W2891266422C89600930 @default.
- W2891266422 hasConceptScore W2891266422C9417928 @default.
- W2891266422 hasLocation W28912664221 @default.
- W2891266422 hasLocation W28912664222 @default.
- W2891266422 hasOpenAccess W2891266422 @default.
- W2891266422 hasPrimaryLocation W28912664221 @default.
- W2891266422 hasRelatedWork W1669643531 @default.
- W2891266422 hasRelatedWork W2122581818 @default.
- W2891266422 hasRelatedWork W2130151498 @default.
- W2891266422 hasRelatedWork W2159066190 @default.
- W2891266422 hasRelatedWork W2165776161 @default.
- W2891266422 hasRelatedWork W2786306966 @default.
- W2891266422 hasRelatedWork W2948658236 @default.
- W2891266422 hasRelatedWork W2949618044 @default.
- W2891266422 hasRelatedWork W2963683723 @default.
- W2891266422 hasRelatedWork W4289552401 @default.
- W2891266422 isParatext "false" @default.
- W2891266422 isRetracted "false" @default.
- W2891266422 magId "2891266422" @default.