Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891292092> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2891292092 endingPage "665" @default.
- W2891292092 startingPage "660" @default.
- W2891292092 abstract "Soil total nitrogen is an important information for diagnosing soil fertility levels and guiding accurate fertilization of crops, it is important to establish a near-infrared spectral estimation model of soil total nitrogen and optimize the selection of modeling bands for the rapid acquisition of soil nutrient information and accurate agricultural development. In this paper, near-infrared spectra of 85 field soil samples were measured using a Fourier-NIR spectrometer. First, S-G smoothing filter was applied to the original spectral curve, and then the sensitivity wavelength of soil total nitrogen content was selected by the normal analysis of correlation coefficient and the random frog leaping algorithm. Multiple linear regression models and wavelet neural network models were established using the selected sensitive wavelength and soil total nitrogen content. The modeling results showed that the determination coefficient Rc2 of the soil total content prediction model established based on random frog leaping-wavelet neural network was 0.9428, the prediction verification coefficient Rv2 was 0.9236, and the root mean square error correction RMSEC was 0.0084. The root mean square RMSEP of the prediction error was 0.0099. The accuracy of modeling and forecasting is significantly improving compared with the traditional method, and the wavelet neural network can effectively solve the nonlinear problem of soil absorbance and can be better used in actual production." @default.
- W2891292092 created "2018-09-27" @default.
- W2891292092 creator A5055340426 @default.
- W2891292092 creator A5058479146 @default.
- W2891292092 creator A5066521642 @default.
- W2891292092 creator A5067512214 @default.
- W2891292092 creator A5070884682 @default.
- W2891292092 creator A5083440798 @default.
- W2891292092 creator A5085971155 @default.
- W2891292092 date "2018-01-01" @default.
- W2891292092 modified "2023-09-23" @default.
- W2891292092 title "Prediction of Total Nitrogen in Soil Based on Random Frog Leaping Wavelet Neural Network" @default.
- W2891292092 cites W2052600159 @default.
- W2891292092 cites W2054403851 @default.
- W2891292092 cites W2136235890 @default.
- W2891292092 cites W2598505938 @default.
- W2891292092 doi "https://doi.org/10.1016/j.ifacol.2018.08.121" @default.
- W2891292092 hasPublicationYear "2018" @default.
- W2891292092 type Work @default.
- W2891292092 sameAs 2891292092 @default.
- W2891292092 citedByCount "8" @default.
- W2891292092 countsByYear W28912920922020 @default.
- W2891292092 countsByYear W28912920922021 @default.
- W2891292092 countsByYear W28912920922022 @default.
- W2891292092 countsByYear W28912920922023 @default.
- W2891292092 crossrefType "journal-article" @default.
- W2891292092 hasAuthorship W2891292092A5055340426 @default.
- W2891292092 hasAuthorship W2891292092A5058479146 @default.
- W2891292092 hasAuthorship W2891292092A5066521642 @default.
- W2891292092 hasAuthorship W2891292092A5067512214 @default.
- W2891292092 hasAuthorship W2891292092A5070884682 @default.
- W2891292092 hasAuthorship W2891292092A5083440798 @default.
- W2891292092 hasAuthorship W2891292092A5085971155 @default.
- W2891292092 hasBestOaLocation W28912920921 @default.
- W2891292092 hasConcept C105795698 @default.
- W2891292092 hasConcept C118518473 @default.
- W2891292092 hasConcept C120217122 @default.
- W2891292092 hasConcept C128990827 @default.
- W2891292092 hasConcept C139945424 @default.
- W2891292092 hasConcept C154945302 @default.
- W2891292092 hasConcept C159390177 @default.
- W2891292092 hasConcept C186060115 @default.
- W2891292092 hasConcept C18903297 @default.
- W2891292092 hasConcept C2780092901 @default.
- W2891292092 hasConcept C33923547 @default.
- W2891292092 hasConcept C3770464 @default.
- W2891292092 hasConcept C39432304 @default.
- W2891292092 hasConcept C41008148 @default.
- W2891292092 hasConcept C47432892 @default.
- W2891292092 hasConcept C86803240 @default.
- W2891292092 hasConceptScore W2891292092C105795698 @default.
- W2891292092 hasConceptScore W2891292092C118518473 @default.
- W2891292092 hasConceptScore W2891292092C120217122 @default.
- W2891292092 hasConceptScore W2891292092C128990827 @default.
- W2891292092 hasConceptScore W2891292092C139945424 @default.
- W2891292092 hasConceptScore W2891292092C154945302 @default.
- W2891292092 hasConceptScore W2891292092C159390177 @default.
- W2891292092 hasConceptScore W2891292092C186060115 @default.
- W2891292092 hasConceptScore W2891292092C18903297 @default.
- W2891292092 hasConceptScore W2891292092C2780092901 @default.
- W2891292092 hasConceptScore W2891292092C33923547 @default.
- W2891292092 hasConceptScore W2891292092C3770464 @default.
- W2891292092 hasConceptScore W2891292092C39432304 @default.
- W2891292092 hasConceptScore W2891292092C41008148 @default.
- W2891292092 hasConceptScore W2891292092C47432892 @default.
- W2891292092 hasConceptScore W2891292092C86803240 @default.
- W2891292092 hasIssue "17" @default.
- W2891292092 hasLocation W28912920921 @default.
- W2891292092 hasOpenAccess W2891292092 @default.
- W2891292092 hasPrimaryLocation W28912920921 @default.
- W2891292092 hasRelatedWork W2049431230 @default.
- W2891292092 hasRelatedWork W2056114942 @default.
- W2891292092 hasRelatedWork W2070542913 @default.
- W2891292092 hasRelatedWork W2108170078 @default.
- W2891292092 hasRelatedWork W2380307679 @default.
- W2891292092 hasRelatedWork W2470760015 @default.
- W2891292092 hasRelatedWork W2606085304 @default.
- W2891292092 hasRelatedWork W2963162866 @default.
- W2891292092 hasRelatedWork W2964084039 @default.
- W2891292092 hasRelatedWork W3136376581 @default.
- W2891292092 hasVolume "51" @default.
- W2891292092 isParatext "false" @default.
- W2891292092 isRetracted "false" @default.
- W2891292092 magId "2891292092" @default.
- W2891292092 workType "article" @default.