Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891292172> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2891292172 abstract "Author(s): Alexander, Monica | Advisor(s): Goldstein, Joshua R | Abstract: The development of mortality models is important in order to reconstruct historical processes, understand current patterns and predict future trends. Mortality models are particularly useful when the available data are sparse, unreliable or incomplete. Traditionally, mortality patterns in data-rich populations were used to observe mathematical or empirical regularities, which could be applied to data-sparse populations. However, as a wider variety of data have become available, the focus of model building has shifted to developing flexible models that perform well in a variety of contexts. This dissertation introduces Bayesian methods of mortality estimation in three contexts where the available data are imperfect. The first paper develops a method to estimate subnational mortality in situations with small populations and highly-variable data. The second paper develops a unified modeling framework to estimate and project neonatal mortality in all countries worldwide, including those with limited and poor-quality data. The third paper introduces a new dataset to study mortality inequalities in the United States, and develops methods to deal with the truncated and censored mortality information that is available. In all three contexts, the modeling approaches combine strengths from traditional demographic models, which capture mortality regularities across age, with the flexibility of Bayesian frameworks, which allow for multiple data sources to be incorporated, information to be shared across time and space, and uncertainty to be assessed." @default.
- W2891292172 created "2018-09-27" @default.
- W2891292172 creator A5030201679 @default.
- W2891292172 date "2018-01-01" @default.
- W2891292172 modified "2023-09-27" @default.
- W2891292172 title "Bayesian Methods for Mortality Estimation" @default.
- W2891292172 hasPublicationYear "2018" @default.
- W2891292172 type Work @default.
- W2891292172 sameAs 2891292172 @default.
- W2891292172 citedByCount "0" @default.
- W2891292172 crossrefType "journal-article" @default.
- W2891292172 hasAuthorship W2891292172A5030201679 @default.
- W2891292172 hasConcept C105795698 @default.
- W2891292172 hasConcept C107673813 @default.
- W2891292172 hasConcept C119857082 @default.
- W2891292172 hasConcept C124101348 @default.
- W2891292172 hasConcept C127413603 @default.
- W2891292172 hasConcept C136197465 @default.
- W2891292172 hasConcept C149782125 @default.
- W2891292172 hasConcept C154945302 @default.
- W2891292172 hasConcept C160234255 @default.
- W2891292172 hasConcept C201995342 @default.
- W2891292172 hasConcept C2522767166 @default.
- W2891292172 hasConcept C2780598303 @default.
- W2891292172 hasConcept C33923547 @default.
- W2891292172 hasConcept C41008148 @default.
- W2891292172 hasConcept C96250715 @default.
- W2891292172 hasConceptScore W2891292172C105795698 @default.
- W2891292172 hasConceptScore W2891292172C107673813 @default.
- W2891292172 hasConceptScore W2891292172C119857082 @default.
- W2891292172 hasConceptScore W2891292172C124101348 @default.
- W2891292172 hasConceptScore W2891292172C127413603 @default.
- W2891292172 hasConceptScore W2891292172C136197465 @default.
- W2891292172 hasConceptScore W2891292172C149782125 @default.
- W2891292172 hasConceptScore W2891292172C154945302 @default.
- W2891292172 hasConceptScore W2891292172C160234255 @default.
- W2891292172 hasConceptScore W2891292172C201995342 @default.
- W2891292172 hasConceptScore W2891292172C2522767166 @default.
- W2891292172 hasConceptScore W2891292172C2780598303 @default.
- W2891292172 hasConceptScore W2891292172C33923547 @default.
- W2891292172 hasConceptScore W2891292172C41008148 @default.
- W2891292172 hasConceptScore W2891292172C96250715 @default.
- W2891292172 hasLocation W28912921721 @default.
- W2891292172 hasOpenAccess W2891292172 @default.
- W2891292172 hasPrimaryLocation W28912921721 @default.
- W2891292172 hasRelatedWork W1478802285 @default.
- W2891292172 hasRelatedWork W1530606377 @default.
- W2891292172 hasRelatedWork W1574679669 @default.
- W2891292172 hasRelatedWork W1790466219 @default.
- W2891292172 hasRelatedWork W1981776441 @default.
- W2891292172 hasRelatedWork W1988361986 @default.
- W2891292172 hasRelatedWork W2092357722 @default.
- W2891292172 hasRelatedWork W2097591889 @default.
- W2891292172 hasRelatedWork W2205036097 @default.
- W2891292172 hasRelatedWork W2507156165 @default.
- W2891292172 hasRelatedWork W2761552372 @default.
- W2891292172 hasRelatedWork W2887885934 @default.
- W2891292172 hasRelatedWork W2974873485 @default.
- W2891292172 hasRelatedWork W3017330510 @default.
- W2891292172 hasRelatedWork W3036004279 @default.
- W2891292172 hasRelatedWork W3121568916 @default.
- W2891292172 hasRelatedWork W3132504211 @default.
- W2891292172 hasRelatedWork W3199464668 @default.
- W2891292172 hasRelatedWork W3201286303 @default.
- W2891292172 hasRelatedWork W2188708784 @default.
- W2891292172 isParatext "false" @default.
- W2891292172 isRetracted "false" @default.
- W2891292172 magId "2891292172" @default.
- W2891292172 workType "article" @default.