Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891298711> ?p ?o ?g. }
- W2891298711 endingPage "520" @default.
- W2891298711 startingPage "505" @default.
- W2891298711 abstract "Recent work has focused on generating synthetic imagery to increase the size and variability of training data for learning visual tasks in urban scenes. This includes increasing the occurrence of occlusions or varying environmental and weather effects. However, few have addressed modeling variation in the sensor domain. Sensor effects can degrade real images, limiting generalizability of network performance on visual tasks trained on synthetic data and tested in real environments. This paper proposes an efficient, automatic, physically-based augmentation pipeline to vary sensor effects – chromatic aberration, blur, exposure, noise, and color temperature – for synthetic imagery. In particular, this paper illustrates that augmenting synthetic training datasets with the proposed pipeline reduces the domain gap between synthetic and real domains for the task of object detection in urban driving scenes." @default.
- W2891298711 created "2018-09-27" @default.
- W2891298711 creator A5002924029 @default.
- W2891298711 creator A5008410240 @default.
- W2891298711 creator A5053632225 @default.
- W2891298711 creator A5089990642 @default.
- W2891298711 date "2019-01-01" @default.
- W2891298711 modified "2023-10-17" @default.
- W2891298711 title "Modeling Camera Effects to Improve Visual Learning from Synthetic Data" @default.
- W2891298711 cites W1901129140 @default.
- W2891298711 cites W1903029394 @default.
- W2891298711 cites W1923184257 @default.
- W2891298711 cites W2014328540 @default.
- W2891298711 cites W2032060170 @default.
- W2891298711 cites W2041334360 @default.
- W2891298711 cites W2095610669 @default.
- W2891298711 cites W2101178408 @default.
- W2891298711 cites W2104745266 @default.
- W2891298711 cites W2130330575 @default.
- W2891298711 cites W2133957619 @default.
- W2891298711 cites W2136035751 @default.
- W2891298711 cites W2150066425 @default.
- W2891298711 cites W2158765440 @default.
- W2891298711 cites W2167222293 @default.
- W2891298711 cites W2340897893 @default.
- W2891298711 cites W2397830550 @default.
- W2891298711 cites W2431874326 @default.
- W2891298711 cites W2487365028 @default.
- W2891298711 cites W2519963891 @default.
- W2891298711 cites W2531044305 @default.
- W2891298711 cites W2568272359 @default.
- W2891298711 cites W2605102758 @default.
- W2891298711 cites W2608461606 @default.
- W2891298711 cites W2739759330 @default.
- W2891298711 cites W2741777758 @default.
- W2891298711 cites W2962793481 @default.
- W2891298711 cites W2963709863 @default.
- W2891298711 cites W2963730616 @default.
- W2891298711 cites W2963956866 @default.
- W2891298711 cites W2963980515 @default.
- W2891298711 cites W343636949 @default.
- W2891298711 doi "https://doi.org/10.1007/978-3-030-11009-3_31" @default.
- W2891298711 hasPublicationYear "2019" @default.
- W2891298711 type Work @default.
- W2891298711 sameAs 2891298711 @default.
- W2891298711 citedByCount "12" @default.
- W2891298711 countsByYear W28912987112019 @default.
- W2891298711 countsByYear W28912987112020 @default.
- W2891298711 countsByYear W28912987112021 @default.
- W2891298711 countsByYear W28912987112022 @default.
- W2891298711 countsByYear W28912987112023 @default.
- W2891298711 crossrefType "book-chapter" @default.
- W2891298711 hasAuthorship W2891298711A5002924029 @default.
- W2891298711 hasAuthorship W2891298711A5008410240 @default.
- W2891298711 hasAuthorship W2891298711A5053632225 @default.
- W2891298711 hasAuthorship W2891298711A5089990642 @default.
- W2891298711 hasBestOaLocation W28912987112 @default.
- W2891298711 hasConcept C105795698 @default.
- W2891298711 hasConcept C108583219 @default.
- W2891298711 hasConcept C115961682 @default.
- W2891298711 hasConcept C127413603 @default.
- W2891298711 hasConcept C134306372 @default.
- W2891298711 hasConcept C153180895 @default.
- W2891298711 hasConcept C154945302 @default.
- W2891298711 hasConcept C160920958 @default.
- W2891298711 hasConcept C162324750 @default.
- W2891298711 hasConcept C187736073 @default.
- W2891298711 hasConcept C188198153 @default.
- W2891298711 hasConcept C199360897 @default.
- W2891298711 hasConcept C27158222 @default.
- W2891298711 hasConcept C2776151529 @default.
- W2891298711 hasConcept C2780451532 @default.
- W2891298711 hasConcept C31972630 @default.
- W2891298711 hasConcept C33923547 @default.
- W2891298711 hasConcept C36503486 @default.
- W2891298711 hasConcept C41008148 @default.
- W2891298711 hasConcept C43521106 @default.
- W2891298711 hasConcept C78519656 @default.
- W2891298711 hasConcept C99498987 @default.
- W2891298711 hasConceptScore W2891298711C105795698 @default.
- W2891298711 hasConceptScore W2891298711C108583219 @default.
- W2891298711 hasConceptScore W2891298711C115961682 @default.
- W2891298711 hasConceptScore W2891298711C127413603 @default.
- W2891298711 hasConceptScore W2891298711C134306372 @default.
- W2891298711 hasConceptScore W2891298711C153180895 @default.
- W2891298711 hasConceptScore W2891298711C154945302 @default.
- W2891298711 hasConceptScore W2891298711C160920958 @default.
- W2891298711 hasConceptScore W2891298711C162324750 @default.
- W2891298711 hasConceptScore W2891298711C187736073 @default.
- W2891298711 hasConceptScore W2891298711C188198153 @default.
- W2891298711 hasConceptScore W2891298711C199360897 @default.
- W2891298711 hasConceptScore W2891298711C27158222 @default.
- W2891298711 hasConceptScore W2891298711C2776151529 @default.
- W2891298711 hasConceptScore W2891298711C2780451532 @default.
- W2891298711 hasConceptScore W2891298711C31972630 @default.
- W2891298711 hasConceptScore W2891298711C33923547 @default.
- W2891298711 hasConceptScore W2891298711C36503486 @default.
- W2891298711 hasConceptScore W2891298711C41008148 @default.