Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891315972> ?p ?o ?g. }
- W2891315972 abstract "The paper introduces a multispectral imaging system and data-processing approach for the identification and discrimination of morphologically indistinguishable cryptic species of the destructive crop pest, the whitefly Bemisia tabaci. This investigation and the corresponding system design, was undertaken in two phases under controlled laboratory conditions. The first exploited a prototype benchtop variant of the proposed sensor system to analyse four cryptic species of whitefly reared under similar conditions. The second phase, of the methodology development, employed a commercial high-precision laboratory hyperspectral imager to recover reference data from five cryptic species of whitefly, immobilized through flash freezing, and taken from across four feeding environments. The initial results, for the single feeding environment, showed that a correct species classification could be achieved in 85–95% of cases, utilising linear Partial Least Squares approaches. The robustness of the classification approach was then extended both in terms of the automated spatial extraction of the most pertinent insect body parts, to assist with the spectral classification model, as well as the incorporation of a non-linear Support Vector Classifier to maintain the overall classification accuracy at 88–98%, irrespective of the feeding and crop environment. This study demonstrates that through an integration of both the spatial data, associated with the multispectral images being used to separate different regions of the insect, and subsequent spectral analysis of those sub-regions, that B. tabaci viral vectors can be differentiated from other cryptic species, that appear morphologically indistinguishable to a human observer, with an accuracy of up to 98%. The implications for the engineering design for an in-field, handheld, sensor system is discussed with respect to the learning gained from this initial stage of the methodology development." @default.
- W2891315972 created "2018-09-27" @default.
- W2891315972 creator A5006716003 @default.
- W2891315972 creator A5017903236 @default.
- W2891315972 creator A5042913506 @default.
- W2891315972 creator A5055697210 @default.
- W2891315972 creator A5057935509 @default.
- W2891315972 creator A5062555050 @default.
- W2891315972 creator A5079348441 @default.
- W2891315972 date "2018-09-20" @default.
- W2891315972 modified "2023-09-23" @default.
- W2891315972 title "A method for real-time classification of insect vectors of mosaic and brown streak disease in cassava plants for future implementation within a low-cost, handheld, in-field multispectral imaging sensor" @default.
- W2891315972 cites W1481460122 @default.
- W2891315972 cites W1920249547 @default.
- W2891315972 cites W1988054515 @default.
- W2891315972 cites W1990550090 @default.
- W2891315972 cites W2012686349 @default.
- W2891315972 cites W2021978304 @default.
- W2891315972 cites W2023203604 @default.
- W2891315972 cites W2029993363 @default.
- W2891315972 cites W2044884673 @default.
- W2891315972 cites W2087029123 @default.
- W2891315972 cites W2114017499 @default.
- W2891315972 cites W2138621882 @default.
- W2891315972 cites W2141733815 @default.
- W2891315972 cites W2146354591 @default.
- W2891315972 cites W2157025214 @default.
- W2891315972 cites W2164032493 @default.
- W2891315972 cites W2172354621 @default.
- W2891315972 cites W2181285891 @default.
- W2891315972 cites W2183649751 @default.
- W2891315972 cites W2610652199 @default.
- W2891315972 cites W2770930359 @default.
- W2891315972 cites W4251384959 @default.
- W2891315972 doi "https://doi.org/10.1186/s13007-018-0350-3" @default.
- W2891315972 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6148801" @default.
- W2891315972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30250493" @default.
- W2891315972 hasPublicationYear "2018" @default.
- W2891315972 type Work @default.
- W2891315972 sameAs 2891315972 @default.
- W2891315972 citedByCount "7" @default.
- W2891315972 countsByYear W28913159722019 @default.
- W2891315972 countsByYear W28913159722020 @default.
- W2891315972 countsByYear W28913159722021 @default.
- W2891315972 countsByYear W28913159722022 @default.
- W2891315972 crossrefType "journal-article" @default.
- W2891315972 hasAuthorship W2891315972A5006716003 @default.
- W2891315972 hasAuthorship W2891315972A5017903236 @default.
- W2891315972 hasAuthorship W2891315972A5042913506 @default.
- W2891315972 hasAuthorship W2891315972A5055697210 @default.
- W2891315972 hasAuthorship W2891315972A5057935509 @default.
- W2891315972 hasAuthorship W2891315972A5062555050 @default.
- W2891315972 hasAuthorship W2891315972A5079348441 @default.
- W2891315972 hasBestOaLocation W28913159721 @default.
- W2891315972 hasConcept C104317684 @default.
- W2891315972 hasConcept C125390029 @default.
- W2891315972 hasConcept C127313418 @default.
- W2891315972 hasConcept C153180895 @default.
- W2891315972 hasConcept C154945302 @default.
- W2891315972 hasConcept C158479148 @default.
- W2891315972 hasConcept C159078339 @default.
- W2891315972 hasConcept C173163844 @default.
- W2891315972 hasConcept C186060115 @default.
- W2891315972 hasConcept C18903297 @default.
- W2891315972 hasConcept C193252679 @default.
- W2891315972 hasConcept C27438332 @default.
- W2891315972 hasConcept C2781436638 @default.
- W2891315972 hasConcept C41008148 @default.
- W2891315972 hasConcept C55493867 @default.
- W2891315972 hasConcept C62649853 @default.
- W2891315972 hasConcept C63479239 @default.
- W2891315972 hasConcept C86803240 @default.
- W2891315972 hasConcept C95623464 @default.
- W2891315972 hasConceptScore W2891315972C104317684 @default.
- W2891315972 hasConceptScore W2891315972C125390029 @default.
- W2891315972 hasConceptScore W2891315972C127313418 @default.
- W2891315972 hasConceptScore W2891315972C153180895 @default.
- W2891315972 hasConceptScore W2891315972C154945302 @default.
- W2891315972 hasConceptScore W2891315972C158479148 @default.
- W2891315972 hasConceptScore W2891315972C159078339 @default.
- W2891315972 hasConceptScore W2891315972C173163844 @default.
- W2891315972 hasConceptScore W2891315972C186060115 @default.
- W2891315972 hasConceptScore W2891315972C18903297 @default.
- W2891315972 hasConceptScore W2891315972C193252679 @default.
- W2891315972 hasConceptScore W2891315972C27438332 @default.
- W2891315972 hasConceptScore W2891315972C2781436638 @default.
- W2891315972 hasConceptScore W2891315972C41008148 @default.
- W2891315972 hasConceptScore W2891315972C55493867 @default.
- W2891315972 hasConceptScore W2891315972C62649853 @default.
- W2891315972 hasConceptScore W2891315972C63479239 @default.
- W2891315972 hasConceptScore W2891315972C86803240 @default.
- W2891315972 hasConceptScore W2891315972C95623464 @default.
- W2891315972 hasFunder F4320306137 @default.
- W2891315972 hasIssue "1" @default.
- W2891315972 hasLocation W28913159721 @default.
- W2891315972 hasLocation W28913159722 @default.
- W2891315972 hasLocation W28913159723 @default.
- W2891315972 hasLocation W28913159724 @default.
- W2891315972 hasLocation W28913159725 @default.
- W2891315972 hasLocation W28913159726 @default.