Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891320392> ?p ?o ?g. }
- W2891320392 endingPage "55" @default.
- W2891320392 startingPage "47" @default.
- W2891320392 abstract "Two-dimensional (2D) liquid chromatography (2DLC) methods have grown in popularity due to their enhanced peak capacity that allows for resolving complex samples. Given the large number of commercially available column types, one of the major challenges in implementing 2DLC methods is the selection of suitable column pairs. Column selection is typically informed by chemical intuition with subsequent experimental optimization. In this work a computational screening method for 2DLC is proposed whereby virtual 2D chromatograms are calculated utilizing the Snyder-Dolan hydrophobic subtraction model (HSM) for reversed-phase column selectivity. Towards this end, 319 225 column pairs resulting from the combination of 565 columns and 100 sets of 1000 diverse analytes are examined. Compared to other screening approaches, the present method is highly predictive for column pairs that are able to resolve the largest number of analytes. This approach shows a strong sensitivity to the choice of the second dimension column (having a shorter operating time) and a preference for those with embedded polar moieties, whereas a relatively weak preference for C18 and phenyl columns is found for the first dimension." @default.
- W2891320392 created "2018-09-27" @default.
- W2891320392 creator A5002652750 @default.
- W2891320392 creator A5003238821 @default.
- W2891320392 creator A5013708115 @default.
- W2891320392 creator A5030933200 @default.
- W2891320392 creator A5060199510 @default.
- W2891320392 creator A5082263870 @default.
- W2891320392 date "2019-03-01" @default.
- W2891320392 modified "2023-10-12" @default.
- W2891320392 title "Column selection for comprehensive two-dimensional liquid chromatography using the hydrophobic subtraction model" @default.
- W2891320392 cites W121720478 @default.
- W2891320392 cites W1629746024 @default.
- W2891320392 cites W1964205145 @default.
- W2891320392 cites W1965815778 @default.
- W2891320392 cites W1966144393 @default.
- W2891320392 cites W1970393939 @default.
- W2891320392 cites W1973606653 @default.
- W2891320392 cites W1975239378 @default.
- W2891320392 cites W1982070701 @default.
- W2891320392 cites W1987672655 @default.
- W2891320392 cites W1994005839 @default.
- W2891320392 cites W2003067394 @default.
- W2891320392 cites W2010116213 @default.
- W2891320392 cites W2010698417 @default.
- W2891320392 cites W2014715194 @default.
- W2891320392 cites W2016022626 @default.
- W2891320392 cites W2027651572 @default.
- W2891320392 cites W2031426237 @default.
- W2891320392 cites W2032311092 @default.
- W2891320392 cites W2046452471 @default.
- W2891320392 cites W2049021607 @default.
- W2891320392 cites W2050413473 @default.
- W2891320392 cites W2050664701 @default.
- W2891320392 cites W2050695297 @default.
- W2891320392 cites W2058932040 @default.
- W2891320392 cites W2060322865 @default.
- W2891320392 cites W2065832363 @default.
- W2891320392 cites W2073432626 @default.
- W2891320392 cites W2075686295 @default.
- W2891320392 cites W2080038602 @default.
- W2891320392 cites W2086937888 @default.
- W2891320392 cites W2090993368 @default.
- W2891320392 cites W2092413318 @default.
- W2891320392 cites W2093830786 @default.
- W2891320392 cites W2116098874 @default.
- W2891320392 cites W2133387602 @default.
- W2891320392 cites W2138932566 @default.
- W2891320392 cites W2154030185 @default.
- W2891320392 cites W2156438336 @default.
- W2891320392 cites W226325114 @default.
- W2891320392 cites W2314672993 @default.
- W2891320392 cites W2436731664 @default.
- W2891320392 cites W2626946433 @default.
- W2891320392 cites W4245548384 @default.
- W2891320392 cites W4251054345 @default.
- W2891320392 cites W2936734734 @default.
- W2891320392 cites W69735882 @default.
- W2891320392 doi "https://doi.org/10.1016/j.chroma.2018.09.018" @default.
- W2891320392 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30797577" @default.
- W2891320392 hasPublicationYear "2019" @default.
- W2891320392 type Work @default.
- W2891320392 sameAs 2891320392 @default.
- W2891320392 citedByCount "13" @default.
- W2891320392 countsByYear W28913203922019 @default.
- W2891320392 countsByYear W28913203922020 @default.
- W2891320392 countsByYear W28913203922022 @default.
- W2891320392 countsByYear W28913203922023 @default.
- W2891320392 crossrefType "journal-article" @default.
- W2891320392 hasAuthorship W2891320392A5002652750 @default.
- W2891320392 hasAuthorship W2891320392A5003238821 @default.
- W2891320392 hasAuthorship W2891320392A5013708115 @default.
- W2891320392 hasAuthorship W2891320392A5030933200 @default.
- W2891320392 hasAuthorship W2891320392A5060199510 @default.
- W2891320392 hasAuthorship W2891320392A5082263870 @default.
- W2891320392 hasBestOaLocation W28913203921 @default.
- W2891320392 hasConcept C10390740 @default.
- W2891320392 hasConcept C126042441 @default.
- W2891320392 hasConcept C137777109 @default.
- W2891320392 hasConcept C154945302 @default.
- W2891320392 hasConcept C179998833 @default.
- W2891320392 hasConcept C185592680 @default.
- W2891320392 hasConcept C186060115 @default.
- W2891320392 hasConcept C2780551164 @default.
- W2891320392 hasConcept C33923547 @default.
- W2891320392 hasConcept C41008148 @default.
- W2891320392 hasConcept C43617362 @default.
- W2891320392 hasConcept C51724486 @default.
- W2891320392 hasConcept C68060419 @default.
- W2891320392 hasConcept C76155785 @default.
- W2891320392 hasConcept C81917197 @default.
- W2891320392 hasConcept C86803240 @default.
- W2891320392 hasConcept C94375191 @default.
- W2891320392 hasConceptScore W2891320392C10390740 @default.
- W2891320392 hasConceptScore W2891320392C126042441 @default.
- W2891320392 hasConceptScore W2891320392C137777109 @default.
- W2891320392 hasConceptScore W2891320392C154945302 @default.
- W2891320392 hasConceptScore W2891320392C179998833 @default.