Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891322019> ?p ?o ?g. }
- W2891322019 endingPage "2062" @default.
- W2891322019 startingPage "2051" @default.
- W2891322019 abstract "Vegetation in Northern Hemisphere, being sensitive to climate change, plays an important role in the carbon cycles between land and the atmosphere. The response of vegetation to climate change was analyzed at pixel, biome and regional scale in Amur-Heilongjiang River Basin (AHRB) for growing season, spring, summer and autumn using Normalized Difference Vegetation Index and gridded climate data for the period 1982–2015. NDVI and climate variables trend detection methods and correlation analysis were applied. The potential impacts of human activities on growing season NDVI dynamics were investigated further using residual trend analysis. Results showed that at river basin scale, growing season vegetation experienced a discontinuous greening trend with two reversals, demonstrating that NDVI initially increased to mid-1990s, then declined to mid-2000s, and finally rebounded to 2015. This may be attributed to the shifting between drought and wet trends, indicating growing season NDVI was mainly regulated by precipitation. Temperature was the dominant factor on affecting spring vegetation growth while autumn NDVI showed negative correlation with precipitation due to the relation of precipitation with sunshine hours available for photosynthesis. The response of vegetation growth to climatic variations varied among vegetation types. Grassland NDVI exhibited positive correlation with precipitation in all time ranges. NDVI of needleleaved forest, broadleaved forest, mixed forest and woodland were positively correlated with temperature in all seasons, while showing significant negative correlation with autumn precipitation. Residual trend analysis revealed that human activities might lead to the vegetation degradation in China farming zone of AHRB. Fires also play an important role in regulating vegetation dynamics in the region. Results of our analysis can be used by national governments from three countries of AHRB in managing and negotiating vegetation resources of the region." @default.
- W2891322019 created "2018-09-27" @default.
- W2891322019 creator A5013967115 @default.
- W2891322019 creator A5040446988 @default.
- W2891322019 creator A5077382057 @default.
- W2891322019 creator A5080389001 @default.
- W2891322019 date "2019-02-01" @default.
- W2891322019 modified "2023-10-18" @default.
- W2891322019 title "NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015" @default.
- W2891322019 cites W1425116125 @default.
- W2891322019 cites W1559539736 @default.
- W2891322019 cites W1668895673 @default.
- W2891322019 cites W1840446202 @default.
- W2891322019 cites W1901442568 @default.
- W2891322019 cites W1918040380 @default.
- W2891322019 cites W1928969689 @default.
- W2891322019 cites W1940816165 @default.
- W2891322019 cites W1970929402 @default.
- W2891322019 cites W1982338803 @default.
- W2891322019 cites W1992050370 @default.
- W2891322019 cites W2002158082 @default.
- W2891322019 cites W2007468519 @default.
- W2891322019 cites W2013700605 @default.
- W2891322019 cites W2013812000 @default.
- W2891322019 cites W2024081693 @default.
- W2891322019 cites W2030816756 @default.
- W2891322019 cites W2051662511 @default.
- W2891322019 cites W2053143553 @default.
- W2891322019 cites W2056845648 @default.
- W2891322019 cites W2072381112 @default.
- W2891322019 cites W2072871667 @default.
- W2891322019 cites W2076848864 @default.
- W2891322019 cites W2114313289 @default.
- W2891322019 cites W2115290239 @default.
- W2891322019 cites W2126603215 @default.
- W2891322019 cites W2141562764 @default.
- W2891322019 cites W2150280378 @default.
- W2891322019 cites W2154710695 @default.
- W2891322019 cites W2155658053 @default.
- W2891322019 cites W2159200641 @default.
- W2891322019 cites W2160362513 @default.
- W2891322019 cites W2171935633 @default.
- W2891322019 cites W2193199107 @default.
- W2891322019 cites W2282122840 @default.
- W2891322019 cites W2310664382 @default.
- W2891322019 cites W2327818245 @default.
- W2891322019 cites W2507818485 @default.
- W2891322019 cites W2523696074 @default.
- W2891322019 cites W2550571043 @default.
- W2891322019 cites W2558484771 @default.
- W2891322019 cites W2592813925 @default.
- W2891322019 cites W2593151515 @default.
- W2891322019 cites W2605353314 @default.
- W2891322019 cites W2605846447 @default.
- W2891322019 cites W2613288273 @default.
- W2891322019 cites W2620575746 @default.
- W2891322019 cites W2662533946 @default.
- W2891322019 cites W2714491858 @default.
- W2891322019 cites W2736095989 @default.
- W2891322019 cites W2743178706 @default.
- W2891322019 cites W2765836469 @default.
- W2891322019 cites W2765955964 @default.
- W2891322019 cites W2783711486 @default.
- W2891322019 cites W2792284213 @default.
- W2891322019 doi "https://doi.org/10.1016/j.scitotenv.2018.09.115" @default.
- W2891322019 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30290347" @default.
- W2891322019 hasPublicationYear "2019" @default.
- W2891322019 type Work @default.
- W2891322019 sameAs 2891322019 @default.
- W2891322019 citedByCount "251" @default.
- W2891322019 countsByYear W28913220192018 @default.
- W2891322019 countsByYear W28913220192019 @default.
- W2891322019 countsByYear W28913220192020 @default.
- W2891322019 countsByYear W28913220192021 @default.
- W2891322019 countsByYear W28913220192022 @default.
- W2891322019 countsByYear W28913220192023 @default.
- W2891322019 crossrefType "journal-article" @default.
- W2891322019 hasAuthorship W2891322019A5013967115 @default.
- W2891322019 hasAuthorship W2891322019A5040446988 @default.
- W2891322019 hasAuthorship W2891322019A5077382057 @default.
- W2891322019 hasAuthorship W2891322019A5080389001 @default.
- W2891322019 hasConcept C100970517 @default.
- W2891322019 hasConcept C107054158 @default.
- W2891322019 hasConcept C127313418 @default.
- W2891322019 hasConcept C132651083 @default.
- W2891322019 hasConcept C137660486 @default.
- W2891322019 hasConcept C142724271 @default.
- W2891322019 hasConcept C153294291 @default.
- W2891322019 hasConcept C1549246 @default.
- W2891322019 hasConcept C18903297 @default.
- W2891322019 hasConcept C203174812 @default.
- W2891322019 hasConcept C205649164 @default.
- W2891322019 hasConcept C2775835988 @default.
- W2891322019 hasConcept C2776133958 @default.
- W2891322019 hasConcept C39432304 @default.
- W2891322019 hasConcept C49204034 @default.
- W2891322019 hasConcept C71924100 @default.
- W2891322019 hasConcept C86803240 @default.