Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891325393> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2891325393 abstract "The curse of dimensionality is a well-known phenomenon that arises when applying machine learning algorithms to highly-dimensional data; it degrades performance as a function of increasing dimension. Due to the high data dimensionality of multispectral and hyperspectral imagery, classifiers trained on limited samples with many spectral bands tend to overfit, leading to weak generalization capability. In this work, we propose an end-to-end framework to effectively integrate input feature selection into the training procedure of a deep neural network for dimensionality reduction. We show that Integrated Learning and Feature Selection (ILFS) significantly improves performance on neural networks for multispectral imagery applications. We also evaluate the proposed methodology as a potential defense against adversarial examples, which are malicious inputs carefully designed to fool a machine learning system. Our experimental results show that methods for generating adversarial examples designed for RGB space are also effective for multispectral imagery and that ILFS significantly mitigates their effect." @default.
- W2891325393 created "2018-09-27" @default.
- W2891325393 creator A5017779570 @default.
- W2891325393 creator A5020091080 @default.
- W2891325393 creator A5032803955 @default.
- W2891325393 creator A5037441297 @default.
- W2891325393 creator A5055407937 @default.
- W2891325393 creator A5087571470 @default.
- W2891325393 date "2018-06-01" @default.
- W2891325393 modified "2023-10-16" @default.
- W2891325393 title "Integrated Learning and Feature Selection for Deep Neural Networks in Multispectral Images" @default.
- W2891325393 cites W1903029394 @default.
- W2891325393 cites W1993369775 @default.
- W2891325393 cites W2028469338 @default.
- W2891325393 cites W2029316659 @default.
- W2891325393 cites W2047029347 @default.
- W2891325393 cites W2109836508 @default.
- W2891325393 cites W2121338139 @default.
- W2891325393 cites W2157621128 @default.
- W2891325393 cites W2180612164 @default.
- W2891325393 cites W2292865806 @default.
- W2891325393 cites W2535873859 @default.
- W2891325393 cites W2557889580 @default.
- W2891325393 cites W2593151847 @default.
- W2891325393 cites W2601281993 @default.
- W2891325393 cites W2604505099 @default.
- W2891325393 cites W2612928413 @default.
- W2891325393 cites W2726231763 @default.
- W2891325393 cites W2963118571 @default.
- W2891325393 cites W2963564844 @default.
- W2891325393 cites W2963857521 @default.
- W2891325393 cites W2963881378 @default.
- W2891325393 cites W2964082701 @default.
- W2891325393 doi "https://doi.org/10.1109/cvprw.2018.00165" @default.
- W2891325393 hasPublicationYear "2018" @default.
- W2891325393 type Work @default.
- W2891325393 sameAs 2891325393 @default.
- W2891325393 citedByCount "12" @default.
- W2891325393 countsByYear W28913253932018 @default.
- W2891325393 countsByYear W28913253932019 @default.
- W2891325393 countsByYear W28913253932020 @default.
- W2891325393 countsByYear W28913253932021 @default.
- W2891325393 countsByYear W28913253932022 @default.
- W2891325393 crossrefType "proceedings-article" @default.
- W2891325393 hasAuthorship W2891325393A5017779570 @default.
- W2891325393 hasAuthorship W2891325393A5020091080 @default.
- W2891325393 hasAuthorship W2891325393A5032803955 @default.
- W2891325393 hasAuthorship W2891325393A5037441297 @default.
- W2891325393 hasAuthorship W2891325393A5055407937 @default.
- W2891325393 hasAuthorship W2891325393A5087571470 @default.
- W2891325393 hasConcept C108583219 @default.
- W2891325393 hasConcept C138885662 @default.
- W2891325393 hasConcept C148483581 @default.
- W2891325393 hasConcept C153180895 @default.
- W2891325393 hasConcept C154945302 @default.
- W2891325393 hasConcept C173163844 @default.
- W2891325393 hasConcept C2776401178 @default.
- W2891325393 hasConcept C31972630 @default.
- W2891325393 hasConcept C41008148 @default.
- W2891325393 hasConcept C41895202 @default.
- W2891325393 hasConcept C50644808 @default.
- W2891325393 hasConcept C81917197 @default.
- W2891325393 hasConceptScore W2891325393C108583219 @default.
- W2891325393 hasConceptScore W2891325393C138885662 @default.
- W2891325393 hasConceptScore W2891325393C148483581 @default.
- W2891325393 hasConceptScore W2891325393C153180895 @default.
- W2891325393 hasConceptScore W2891325393C154945302 @default.
- W2891325393 hasConceptScore W2891325393C173163844 @default.
- W2891325393 hasConceptScore W2891325393C2776401178 @default.
- W2891325393 hasConceptScore W2891325393C31972630 @default.
- W2891325393 hasConceptScore W2891325393C41008148 @default.
- W2891325393 hasConceptScore W2891325393C41895202 @default.
- W2891325393 hasConceptScore W2891325393C50644808 @default.
- W2891325393 hasConceptScore W2891325393C81917197 @default.
- W2891325393 hasLocation W28913253931 @default.
- W2891325393 hasOpenAccess W2891325393 @default.
- W2891325393 hasPrimaryLocation W28913253931 @default.
- W2891325393 hasRelatedWork W1504288058 @default.
- W2891325393 hasRelatedWork W2048505601 @default.
- W2891325393 hasRelatedWork W2102575890 @default.
- W2891325393 hasRelatedWork W2167293474 @default.
- W2891325393 hasRelatedWork W2331674254 @default.
- W2891325393 hasRelatedWork W2544717973 @default.
- W2891325393 hasRelatedWork W2773120646 @default.
- W2891325393 hasRelatedWork W2956043259 @default.
- W2891325393 hasRelatedWork W2961060159 @default.
- W2891325393 hasRelatedWork W3042897387 @default.
- W2891325393 isParatext "false" @default.
- W2891325393 isRetracted "false" @default.
- W2891325393 magId "2891325393" @default.
- W2891325393 workType "article" @default.