Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891325423> ?p ?o ?g. }
- W2891325423 abstract "Current trends in scientific imaging are challenged by the emerging need of integrating sophisticated machine learning with Big Data analytics platforms. This work proposes an in-memory distributed learning architecture for enabling sophisticated learning and optimization techniques on scientific imaging problems, which are characterized by the combination of variant information from different origins. We apply the resulting, Spark-compliant, architecture on two emerging use cases from the scientific imaging domain, namely: (a) the space variant deconvolution of galaxy imaging surveys (astrophysics), (b) the super-resolution based on coupled dictionary training (remote sensing). We conduct evaluation studies considering relevant datasets, and the results report at least 60% improvement in time response against the conventional computing solutions. Ultimately, the offered discussion provides useful practical insights on the impact of key Spark tuning parameters on the speedup achieved, and the memory/disk footprint." @default.
- W2891325423 created "2018-09-27" @default.
- W2891325423 creator A5002165073 @default.
- W2891325423 creator A5008794792 @default.
- W2891325423 creator A5015346675 @default.
- W2891325423 creator A5019376862 @default.
- W2891325423 creator A5027583562 @default.
- W2891325423 creator A5060388738 @default.
- W2891325423 creator A5067058424 @default.
- W2891325423 date "2018-09-16" @default.
- W2891325423 modified "2023-09-27" @default.
- W2891325423 title "A Distributed Learning Architecture for Scientific Imaging Problems" @default.
- W2891325423 cites W1505183255 @default.
- W2891325423 cites W1591116419 @default.
- W2891325423 cites W1868798185 @default.
- W2891325423 cites W1998991750 @default.
- W2891325423 cites W2019183416 @default.
- W2891325423 cites W2064349969 @default.
- W2891325423 cites W2081930221 @default.
- W2891325423 cites W2096544401 @default.
- W2891325423 cites W2101234009 @default.
- W2891325423 cites W2109574129 @default.
- W2891325423 cites W2117157603 @default.
- W2891325423 cites W2119745055 @default.
- W2891325423 cites W2131975293 @default.
- W2891325423 cites W2132737349 @default.
- W2891325423 cites W2135625048 @default.
- W2891325423 cites W2141859059 @default.
- W2891325423 cites W2142238829 @default.
- W2891325423 cites W2157954477 @default.
- W2891325423 cites W2159080219 @default.
- W2891325423 cites W2167994292 @default.
- W2891325423 cites W2169251528 @default.
- W2891325423 cites W2173213060 @default.
- W2891325423 cites W2204857797 @default.
- W2891325423 cites W2295652899 @default.
- W2891325423 cites W2375984290 @default.
- W2891325423 cites W2460959592 @default.
- W2891325423 cites W2465463737 @default.
- W2891325423 cites W2493239084 @default.
- W2891325423 cites W2515920125 @default.
- W2891325423 cites W2517202832 @default.
- W2891325423 cites W2542459869 @default.
- W2891325423 cites W2576683119 @default.
- W2891325423 cites W2579247884 @default.
- W2891325423 cites W2583618877 @default.
- W2891325423 cites W2597378585 @default.
- W2891325423 cites W2610485364 @default.
- W2891325423 cites W2714779472 @default.
- W2891325423 cites W2766094022 @default.
- W2891325423 cites W2766418007 @default.
- W2891325423 cites W2770380702 @default.
- W2891325423 cites W2782959932 @default.
- W2891325423 cites W2790583019 @default.
- W2891325423 cites W2806767082 @default.
- W2891325423 cites W2952305479 @default.
- W2891325423 cites W2963042747 @default.
- W2891325423 cites W2963288913 @default.
- W2891325423 cites W2963390885 @default.
- W2891325423 cites W2998586953 @default.
- W2891325423 cites W3148183702 @default.
- W2891325423 cites W3171695123 @default.
- W2891325423 hasPublicationYear "2018" @default.
- W2891325423 type Work @default.
- W2891325423 sameAs 2891325423 @default.
- W2891325423 citedByCount "0" @default.
- W2891325423 crossrefType "posted-content" @default.
- W2891325423 hasAuthorship W2891325423A5002165073 @default.
- W2891325423 hasAuthorship W2891325423A5008794792 @default.
- W2891325423 hasAuthorship W2891325423A5015346675 @default.
- W2891325423 hasAuthorship W2891325423A5019376862 @default.
- W2891325423 hasAuthorship W2891325423A5027583562 @default.
- W2891325423 hasAuthorship W2891325423A5060388738 @default.
- W2891325423 hasAuthorship W2891325423A5067058424 @default.
- W2891325423 hasConcept C111919701 @default.
- W2891325423 hasConcept C113775141 @default.
- W2891325423 hasConcept C11413529 @default.
- W2891325423 hasConcept C118524514 @default.
- W2891325423 hasConcept C119857082 @default.
- W2891325423 hasConcept C123657996 @default.
- W2891325423 hasConcept C124101348 @default.
- W2891325423 hasConcept C134306372 @default.
- W2891325423 hasConcept C142362112 @default.
- W2891325423 hasConcept C153349607 @default.
- W2891325423 hasConcept C154945302 @default.
- W2891325423 hasConcept C165696696 @default.
- W2891325423 hasConcept C173608175 @default.
- W2891325423 hasConcept C174576160 @default.
- W2891325423 hasConcept C199360897 @default.
- W2891325423 hasConcept C2522767166 @default.
- W2891325423 hasConcept C2781215313 @default.
- W2891325423 hasConcept C33923547 @default.
- W2891325423 hasConcept C36503486 @default.
- W2891325423 hasConcept C38652104 @default.
- W2891325423 hasConcept C41008148 @default.
- W2891325423 hasConcept C68339613 @default.
- W2891325423 hasConcept C74912251 @default.
- W2891325423 hasConcept C75684735 @default.
- W2891325423 hasConcept C79158427 @default.
- W2891325423 hasConceptScore W2891325423C111919701 @default.