Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891328086> ?p ?o ?g. }
- W2891328086 abstract "Background/Aims: Brain functional connectivity networks constructed from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used for classifying Alzheimer’s disease (AD) from normal controls (NC). However, conventional correlation analysis methods only capture the pairwise information, which may not be capable of revealing an adequate and accurate functional connectivity relationship among brain regions in the whole brain. Additionally, the non-sparse connectivity networks commonly contain a large number of spurious or insignificant connections, which are inconsistent with the sparse connectivity of actual brain networks in nature and may deteriorate the classification performance of Alzheimer's disease. Methods: To address these problems, in this paper, a new classification framework is proposed by combining the Group-constrained topology structure detection with sparse inverse covariance estimation (SICE) method to build the functional brain sub-network for each brain region. Particularly, to tune the sensitive analysis of the regularized parameters in the SICE method, a nested leave-one-out cross-validation (LOOCV) method is adopted. Sparse functional connectivity networks are thus effectively constructed by using the optimal regularized parameters. Finally, a decision classification tree (DCT) classifier is trained for classifying AD from NC based on these optimal functional brain sub-networks. The convergence performance of our proposed method is furthermore evaluated by the trend of coefficient variation. Results: Experiment results indicate that a LOOCV classification accuracy of 81.82% with a sensitivity of 80.00%, and a specificity of 83.33% can be obtained by using the proposed method for the classification AD from NC, and outperforms the most state-of-the-art methods in terms of the classification accuracy. Additionally, the experiment results of the convergence performance further suggest that our proposed scheme has a high rate of convergence. Particularly, the abnormal brain regions and functional connections identified by our proposed framework are highly associated with the underpinning pathological mechanism of the AD, which are consistent with previous studies. Conclusion: These results have demonstrated the effectiveness of the proposed Group- constrained SICE method, and are capable of clinical value to the diagnosis of Alzheimer’s disease." @default.
- W2891328086 created "2018-09-27" @default.
- W2891328086 creator A5025930608 @default.
- W2891328086 creator A5064842058 @default.
- W2891328086 creator A5076174605 @default.
- W2891328086 creator A5086759793 @default.
- W2891328086 creator A5091320821 @default.
- W2891328086 date "2018-09-07" @default.
- W2891328086 modified "2023-09-24" @default.
- W2891328086 title "Learning Brain Connectivity Sub-networks by Group- Constrained Sparse Inverse Covariance Estimation for Alzheimer's Disease Classification" @default.
- W2891328086 cites W1659055493 @default.
- W2891328086 cites W1721214611 @default.
- W2891328086 cites W1734366871 @default.
- W2891328086 cites W1760829075 @default.
- W2891328086 cites W1901624583 @default.
- W2891328086 cites W1967013191 @default.
- W2891328086 cites W1973612122 @default.
- W2891328086 cites W1991952617 @default.
- W2891328086 cites W1996020380 @default.
- W2891328086 cites W2007369824 @default.
- W2891328086 cites W2007572953 @default.
- W2891328086 cites W2037166045 @default.
- W2891328086 cites W2048107129 @default.
- W2891328086 cites W2057550180 @default.
- W2891328086 cites W2058046532 @default.
- W2891328086 cites W2067825653 @default.
- W2891328086 cites W2079062663 @default.
- W2891328086 cites W2079477993 @default.
- W2891328086 cites W2080423173 @default.
- W2891328086 cites W2086641462 @default.
- W2891328086 cites W2118323338 @default.
- W2891328086 cites W2122320288 @default.
- W2891328086 cites W2129812935 @default.
- W2891328086 cites W2135509669 @default.
- W2891328086 cites W2138991775 @default.
- W2891328086 cites W2140514146 @default.
- W2891328086 cites W2143285014 @default.
- W2891328086 cites W2156220037 @default.
- W2891328086 cites W2162010696 @default.
- W2891328086 cites W2162192631 @default.
- W2891328086 cites W2168175751 @default.
- W2891328086 cites W2290144698 @default.
- W2891328086 cites W2292252744 @default.
- W2891328086 cites W2333888369 @default.
- W2891328086 cites W2442017823 @default.
- W2891328086 cites W2575359420 @default.
- W2891328086 cites W2592790850 @default.
- W2891328086 cites W2617938108 @default.
- W2891328086 cites W2751512870 @default.
- W2891328086 cites W2768213554 @default.
- W2891328086 cites W2785095595 @default.
- W2891328086 cites W2801824916 @default.
- W2891328086 cites W2805858976 @default.
- W2891328086 cites W2963304125 @default.
- W2891328086 cites W2964266449 @default.
- W2891328086 cites W4210975612 @default.
- W2891328086 cites W4230920194 @default.
- W2891328086 cites W4244883719 @default.
- W2891328086 cites W829552687 @default.
- W2891328086 doi "https://doi.org/10.3389/fninf.2018.00058" @default.
- W2891328086 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6143825" @default.
- W2891328086 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30258358" @default.
- W2891328086 hasPublicationYear "2018" @default.
- W2891328086 type Work @default.
- W2891328086 sameAs 2891328086 @default.
- W2891328086 citedByCount "13" @default.
- W2891328086 countsByYear W28913280862019 @default.
- W2891328086 countsByYear W28913280862020 @default.
- W2891328086 countsByYear W28913280862021 @default.
- W2891328086 countsByYear W28913280862022 @default.
- W2891328086 countsByYear W28913280862023 @default.
- W2891328086 crossrefType "journal-article" @default.
- W2891328086 hasAuthorship W2891328086A5025930608 @default.
- W2891328086 hasAuthorship W2891328086A5064842058 @default.
- W2891328086 hasAuthorship W2891328086A5076174605 @default.
- W2891328086 hasAuthorship W2891328086A5086759793 @default.
- W2891328086 hasAuthorship W2891328086A5091320821 @default.
- W2891328086 hasBestOaLocation W28913280861 @default.
- W2891328086 hasConcept C105795698 @default.
- W2891328086 hasConcept C119857082 @default.
- W2891328086 hasConcept C153180895 @default.
- W2891328086 hasConcept C154945302 @default.
- W2891328086 hasConcept C178650346 @default.
- W2891328086 hasConcept C184898388 @default.
- W2891328086 hasConcept C27181475 @default.
- W2891328086 hasConcept C33923547 @default.
- W2891328086 hasConcept C41008148 @default.
- W2891328086 hasConcept C95623464 @default.
- W2891328086 hasConceptScore W2891328086C105795698 @default.
- W2891328086 hasConceptScore W2891328086C119857082 @default.
- W2891328086 hasConceptScore W2891328086C153180895 @default.
- W2891328086 hasConceptScore W2891328086C154945302 @default.
- W2891328086 hasConceptScore W2891328086C178650346 @default.
- W2891328086 hasConceptScore W2891328086C184898388 @default.
- W2891328086 hasConceptScore W2891328086C27181475 @default.
- W2891328086 hasConceptScore W2891328086C33923547 @default.
- W2891328086 hasConceptScore W2891328086C41008148 @default.
- W2891328086 hasConceptScore W2891328086C95623464 @default.
- W2891328086 hasFunder F4320321001 @default.
- W2891328086 hasLocation W28913280861 @default.