Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891331614> ?p ?o ?g. }
- W2891331614 abstract "Fulfilling the vision of Semantic Web requires an accurate data model for organizing knowledge and sharing common understanding of the domain. Fitting this description, ontologies are the cornerstones of Semantic Web and can be used to solve many problems of clinical information and biomedical engineering, such as word sense disambiguation, semantic similarity, question answering, ontology alignment, etc. Manual construction of ontology is labor intensive and requires domain experts and ontology engineers. To downsize the labor-intensive nature of ontology generation and minimize the need for domain experts, we present a novel automated ontology generation framework, Linked Open Data approach for Automatic Biomedical Ontology Generation (LOD-ABOG), which is empowered by Linked Open Data (LOD). LOD-ABOG performs concept extraction using knowledge base mainly UMLS and LOD, along with Natural Language Processing (NLP) operations; and applies relation extraction using LOD, Breadth first Search (BSF) graph method, and Freepal repository patterns.Our evaluation shows improved results in most of the tasks of ontology generation compared to those obtained by existing frameworks. We evaluated the performance of individual tasks (modules) of proposed framework using CDR and SemMedDB datasets. For concept extraction, evaluation shows an average F-measure of 58.12% for CDR corpus and 81.68% for SemMedDB; F-measure of 65.26% and 77.44% for biomedical taxonomic relation extraction using datasets of CDR and SemMedDB, respectively; and F-measure of 52.78% and 58.12% for biomedical non-taxonomic relation extraction using CDR corpus and SemMedDB, respectively. Additionally, the comparison with manually constructed baseline Alzheimer ontology shows F-measure of 72.48% in terms of concepts detection, 76.27% in relation extraction, and 83.28% in property extraction. Also, we compared our proposed framework with ontology-learning framework called OntoGain which shows that LOD-ABOG performs 14.76% better in terms of relation extraction.This paper has presented LOD-ABOG framework which shows that current LOD sources and technologies are a promising solution to automate the process of biomedical ontology generation and extract relations to a greater extent. In addition, unlike existing frameworks which require domain experts in ontology development process, the proposed approach requires involvement of them only for improvement purpose at the end of ontology life cycle." @default.
- W2891331614 created "2018-09-27" @default.
- W2891331614 creator A5024102795 @default.
- W2891331614 creator A5029286245 @default.
- W2891331614 creator A5031567705 @default.
- W2891331614 date "2018-09-10" @default.
- W2891331614 modified "2023-10-08" @default.
- W2891331614 title "Linked open data-based framework for automatic biomedical ontology generation" @default.
- W2891331614 cites W1550258693 @default.
- W2891331614 cites W1561908597 @default.
- W2891331614 cites W1596295448 @default.
- W2891331614 cites W1982098236 @default.
- W2891331614 cites W1991578288 @default.
- W2891331614 cites W2033377040 @default.
- W2891331614 cites W2036935277 @default.
- W2891331614 cites W2068737686 @default.
- W2891331614 cites W2081687495 @default.
- W2891331614 cites W2098201295 @default.
- W2891331614 cites W2109070394 @default.
- W2891331614 cites W2117446654 @default.
- W2891331614 cites W2123036291 @default.
- W2891331614 cites W2123442489 @default.
- W2891331614 cites W2131660156 @default.
- W2891331614 cites W2157157278 @default.
- W2891331614 cites W2159092541 @default.
- W2891331614 cites W2160760396 @default.
- W2891331614 cites W2169974160 @default.
- W2891331614 cites W2249233388 @default.
- W2891331614 cites W2282325069 @default.
- W2891331614 cites W2417032668 @default.
- W2891331614 cites W2528521803 @default.
- W2891331614 cites W2604748391 @default.
- W2891331614 cites W2740929592 @default.
- W2891331614 cites W2920789561 @default.
- W2891331614 cites W4255991504 @default.
- W2891331614 cites W4293294484 @default.
- W2891331614 doi "https://doi.org/10.1186/s12859-018-2339-3" @default.
- W2891331614 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6131949" @default.
- W2891331614 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30200874" @default.
- W2891331614 hasPublicationYear "2018" @default.
- W2891331614 type Work @default.
- W2891331614 sameAs 2891331614 @default.
- W2891331614 citedByCount "18" @default.
- W2891331614 countsByYear W28913316142018 @default.
- W2891331614 countsByYear W28913316142019 @default.
- W2891331614 countsByYear W28913316142020 @default.
- W2891331614 countsByYear W28913316142021 @default.
- W2891331614 countsByYear W28913316142022 @default.
- W2891331614 crossrefType "journal-article" @default.
- W2891331614 hasAuthorship W2891331614A5024102795 @default.
- W2891331614 hasAuthorship W2891331614A5029286245 @default.
- W2891331614 hasAuthorship W2891331614A5031567705 @default.
- W2891331614 hasBestOaLocation W28913316141 @default.
- W2891331614 hasConcept C111472728 @default.
- W2891331614 hasConcept C124101348 @default.
- W2891331614 hasConcept C130318100 @default.
- W2891331614 hasConcept C134306372 @default.
- W2891331614 hasConcept C137982476 @default.
- W2891331614 hasConcept C138885662 @default.
- W2891331614 hasConcept C153604712 @default.
- W2891331614 hasConcept C154945302 @default.
- W2891331614 hasConcept C195807954 @default.
- W2891331614 hasConcept C204321447 @default.
- W2891331614 hasConcept C2129575 @default.
- W2891331614 hasConcept C22550185 @default.
- W2891331614 hasConcept C23123220 @default.
- W2891331614 hasConcept C25343380 @default.
- W2891331614 hasConcept C25810664 @default.
- W2891331614 hasConcept C33923547 @default.
- W2891331614 hasConcept C36503486 @default.
- W2891331614 hasConcept C41008148 @default.
- W2891331614 hasConcept C69075417 @default.
- W2891331614 hasConcept C69505689 @default.
- W2891331614 hasConcept C78726541 @default.
- W2891331614 hasConcept C98893333 @default.
- W2891331614 hasConceptScore W2891331614C111472728 @default.
- W2891331614 hasConceptScore W2891331614C124101348 @default.
- W2891331614 hasConceptScore W2891331614C130318100 @default.
- W2891331614 hasConceptScore W2891331614C134306372 @default.
- W2891331614 hasConceptScore W2891331614C137982476 @default.
- W2891331614 hasConceptScore W2891331614C138885662 @default.
- W2891331614 hasConceptScore W2891331614C153604712 @default.
- W2891331614 hasConceptScore W2891331614C154945302 @default.
- W2891331614 hasConceptScore W2891331614C195807954 @default.
- W2891331614 hasConceptScore W2891331614C204321447 @default.
- W2891331614 hasConceptScore W2891331614C2129575 @default.
- W2891331614 hasConceptScore W2891331614C22550185 @default.
- W2891331614 hasConceptScore W2891331614C23123220 @default.
- W2891331614 hasConceptScore W2891331614C25343380 @default.
- W2891331614 hasConceptScore W2891331614C25810664 @default.
- W2891331614 hasConceptScore W2891331614C33923547 @default.
- W2891331614 hasConceptScore W2891331614C36503486 @default.
- W2891331614 hasConceptScore W2891331614C41008148 @default.
- W2891331614 hasConceptScore W2891331614C69075417 @default.
- W2891331614 hasConceptScore W2891331614C69505689 @default.
- W2891331614 hasConceptScore W2891331614C78726541 @default.
- W2891331614 hasConceptScore W2891331614C98893333 @default.
- W2891331614 hasIssue "1" @default.
- W2891331614 hasLocation W28913316141 @default.
- W2891331614 hasLocation W28913316142 @default.