Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891337205> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2891337205 abstract "IntroductionElectronic medical records (EMRs) are increasingly used in health services research. Accurate/efficient identification of a target population with a specific disease phenotype is a necessary precursor to studying the health of these individuals.
 Objectives and ApproachWe explored the use of biomedical text as inputs to supervised phenotype identification algorithms. We employed a two-stage classification approach to map the discrete, sparse high-dimensional biomedical text data to a dense low dimensional vector space using methods from unsupervised machine learning. Next we used these learned vectors as inputs to supervised machine learning algorithms for phenotype identification.
 We were able to demonstrate the applicability of the approach to identifying patients with an osteoarthritis (OA) phenotype using primary care data from the Electronic Medical Record Administrative data Linked Database (EMRALD) held at ICES.
 ResultsEMRALD contains approximately 20Gb of biomedical text data on approximately 500,000 patients. The unit of analysis for this study is the patient. We were interested in identifying OA patients using solely text data as features.
 Labelled outcome information wass available from a random sample of 7,500 patients. We divided patients into training (N=6000), validation (N=750) and test (N=750) cohorts. We learned low dimensional representations of the input text data on the entire EMRALD corpus (N=500,000). We used learned numeric vectors as inputs to supervised machine learning models for OA classification (N=6,000 training set patients).
 We compared models in terms of accuracy, sensitivity, specificity, PPV and NPV. The best learned models achieved approximately 90% sensitivity and 80% specificity. Classification accuracy varied as a function of learned inputs.
 Conclusion/ImplicationsWe developed an approach to phenotype identification using solely biomedical text as an input. Preliminary results suggest our two-stage ML approach has improved operating characteristics compared to existing clinically derived decision rules for OA classification. Future work will explore the generalizability of this methodology to other disease phenotypes." @default.
- W2891337205 created "2018-09-27" @default.
- W2891337205 creator A5001830614 @default.
- W2891337205 creator A5022468464 @default.
- W2891337205 creator A5042605689 @default.
- W2891337205 creator A5053473096 @default.
- W2891337205 creator A5056256317 @default.
- W2891337205 creator A5061181406 @default.
- W2891337205 date "2018-08-30" @default.
- W2891337205 modified "2023-09-23" @default.
- W2891337205 title "Using Biomedical Text as Data and Representation Learning for Identifying Patients with an Osteoarthritis Phenotype in the Electronic Medical Record" @default.
- W2891337205 doi "https://doi.org/10.23889/ijpds.v3i4.761" @default.
- W2891337205 hasPublicationYear "2018" @default.
- W2891337205 type Work @default.
- W2891337205 sameAs 2891337205 @default.
- W2891337205 citedByCount "0" @default.
- W2891337205 crossrefType "journal-article" @default.
- W2891337205 hasAuthorship W2891337205A5001830614 @default.
- W2891337205 hasAuthorship W2891337205A5022468464 @default.
- W2891337205 hasAuthorship W2891337205A5042605689 @default.
- W2891337205 hasAuthorship W2891337205A5053473096 @default.
- W2891337205 hasAuthorship W2891337205A5056256317 @default.
- W2891337205 hasAuthorship W2891337205A5061181406 @default.
- W2891337205 hasBestOaLocation W28913372051 @default.
- W2891337205 hasConcept C116834253 @default.
- W2891337205 hasConcept C119857082 @default.
- W2891337205 hasConcept C12267149 @default.
- W2891337205 hasConcept C136389625 @default.
- W2891337205 hasConcept C148524875 @default.
- W2891337205 hasConcept C154945302 @default.
- W2891337205 hasConcept C169258074 @default.
- W2891337205 hasConcept C17744445 @default.
- W2891337205 hasConcept C199539241 @default.
- W2891337205 hasConcept C2776359362 @default.
- W2891337205 hasConcept C2908647359 @default.
- W2891337205 hasConcept C41008148 @default.
- W2891337205 hasConcept C50644808 @default.
- W2891337205 hasConcept C59822182 @default.
- W2891337205 hasConcept C71924100 @default.
- W2891337205 hasConcept C86803240 @default.
- W2891337205 hasConcept C94625758 @default.
- W2891337205 hasConcept C99454951 @default.
- W2891337205 hasConceptScore W2891337205C116834253 @default.
- W2891337205 hasConceptScore W2891337205C119857082 @default.
- W2891337205 hasConceptScore W2891337205C12267149 @default.
- W2891337205 hasConceptScore W2891337205C136389625 @default.
- W2891337205 hasConceptScore W2891337205C148524875 @default.
- W2891337205 hasConceptScore W2891337205C154945302 @default.
- W2891337205 hasConceptScore W2891337205C169258074 @default.
- W2891337205 hasConceptScore W2891337205C17744445 @default.
- W2891337205 hasConceptScore W2891337205C199539241 @default.
- W2891337205 hasConceptScore W2891337205C2776359362 @default.
- W2891337205 hasConceptScore W2891337205C2908647359 @default.
- W2891337205 hasConceptScore W2891337205C41008148 @default.
- W2891337205 hasConceptScore W2891337205C50644808 @default.
- W2891337205 hasConceptScore W2891337205C59822182 @default.
- W2891337205 hasConceptScore W2891337205C71924100 @default.
- W2891337205 hasConceptScore W2891337205C86803240 @default.
- W2891337205 hasConceptScore W2891337205C94625758 @default.
- W2891337205 hasConceptScore W2891337205C99454951 @default.
- W2891337205 hasLocation W28913372051 @default.
- W2891337205 hasOpenAccess W2891337205 @default.
- W2891337205 hasPrimaryLocation W28913372051 @default.
- W2891337205 hasRelatedWork W2616952103 @default.
- W2891337205 hasRelatedWork W2806504660 @default.
- W2891337205 hasRelatedWork W2979979539 @default.
- W2891337205 hasRelatedWork W3195168932 @default.
- W2891337205 hasRelatedWork W4205958290 @default.
- W2891337205 hasRelatedWork W4206558754 @default.
- W2891337205 hasRelatedWork W4224255229 @default.
- W2891337205 hasRelatedWork W4249746146 @default.
- W2891337205 hasRelatedWork W4281560664 @default.
- W2891337205 hasRelatedWork W4283016678 @default.
- W2891337205 isParatext "false" @default.
- W2891337205 isRetracted "false" @default.
- W2891337205 magId "2891337205" @default.
- W2891337205 workType "article" @default.