Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891337907> ?p ?o ?g. }
- W2891337907 endingPage "134" @default.
- W2891337907 startingPage "120" @default.
- W2891337907 abstract "Lung adenocarcinoma (LUAD) is a heterogeneous disease with poor survival in the advanced stage and a high incidence rate in the world. Novel drug targets are urgently required to improve patient treatment. Therefore, we aimed to identify therapeutic targets for LUAD based on protein-protein and protein-drug interaction network analysis with neural network algorithms using mRNA expression profiles.A comprehensive meta-analysis of selective non-small cell lung cancer (NSCLC) mRNA expression profile datasets from Gene Expression Omnibus were used to identify potential biomarkers and the molecular mechanisms related to the prognosis of NSCLC patients. Using the Network Analyst tool, based on combined effect size (ES) methods, we recognized 6566 differentially expressed genes (DEGs), which included 3036 downregulated and 3530 upregulated genes linked to NSCLC patient survival. ClueGO, a Cytoscape plugin, was exploited to complete the function and pathway enrichment analysis, which disclosed regulated exocytosis, purine nucleotide binding, pathways in cancer, and cell cycle between exceptionally supplemented terms. Enrichr, a web tool examination, demonstrated early growth response protein 1 (EGR-1), hepatocyte nuclear factor 4α (HNF4A), mitogen-activated protein kinase 14 (MAP3K14), and cyclin-dependent kinase 1 (CDK1) to be among the most prevalent TFs and kinases associated with NSCLC. Our meta-analysis identified that MAPK1 and aurora kinase (AURKA) are the most obvious class of hub nodes. Furthermore, protein-drug interaction network and neural network algorithms identified candidate drugs such as phosphothreonine and 4-(4-methylpiperazin-1-yl)-n-[5-(2-thienylacetyl)-1,5-dihydropyrrolo[3,4-c]pyrazol-3-yl] benzamide and for the targets MAPK1 and AURKA, respectively.Our study has identified novel candidate biomarkers, pathways, transcription factors (TFs), and kinases associated with NSCLC prognosis, as well as drug candidates, which may assist treatment strategy for NSCLC patients." @default.
- W2891337907 created "2018-09-27" @default.
- W2891337907 creator A5000281650 @default.
- W2891337907 creator A5004240068 @default.
- W2891337907 creator A5027004608 @default.
- W2891337907 creator A5040534841 @default.
- W2891337907 creator A5052942510 @default.
- W2891337907 creator A5062315365 @default.
- W2891337907 creator A5078989023 @default.
- W2891337907 creator A5087272193 @default.
- W2891337907 date "2018-10-01" @default.
- W2891337907 modified "2023-10-01" @default.
- W2891337907 title "Identification of target gene and prognostic evaluation for lung adenocarcinoma using gene expression meta-analysis, network analysis and neural network algorithms" @default.
- W2891337907 cites W1559664759 @default.
- W2891337907 cites W1566831845 @default.
- W2891337907 cites W1944929196 @default.
- W2891337907 cites W1968682237 @default.
- W2891337907 cites W1974828111 @default.
- W2891337907 cites W1979522770 @default.
- W2891337907 cites W1981466043 @default.
- W2891337907 cites W1983721404 @default.
- W2891337907 cites W1985400016 @default.
- W2891337907 cites W1986805345 @default.
- W2891337907 cites W1988156822 @default.
- W2891337907 cites W1989734503 @default.
- W2891337907 cites W1992426410 @default.
- W2891337907 cites W1998612778 @default.
- W2891337907 cites W2001984393 @default.
- W2891337907 cites W2008017785 @default.
- W2891337907 cites W2015688756 @default.
- W2891337907 cites W2032192339 @default.
- W2891337907 cites W2033590892 @default.
- W2891337907 cites W2042386784 @default.
- W2891337907 cites W2043794793 @default.
- W2891337907 cites W2049674541 @default.
- W2891337907 cites W2062289724 @default.
- W2891337907 cites W2062967876 @default.
- W2891337907 cites W2068351024 @default.
- W2891337907 cites W2070050178 @default.
- W2891337907 cites W2073852830 @default.
- W2891337907 cites W2075490622 @default.
- W2891337907 cites W2079239846 @default.
- W2891337907 cites W2090116402 @default.
- W2891337907 cites W2092443043 @default.
- W2891337907 cites W2099755355 @default.
- W2891337907 cites W2113778023 @default.
- W2891337907 cites W2116531018 @default.
- W2891337907 cites W2120878404 @default.
- W2891337907 cites W2121042485 @default.
- W2891337907 cites W2126496132 @default.
- W2891337907 cites W2127969732 @default.
- W2891337907 cites W2128360321 @default.
- W2891337907 cites W2129590156 @default.
- W2891337907 cites W2130479394 @default.
- W2891337907 cites W2131220803 @default.
- W2891337907 cites W2132629607 @default.
- W2891337907 cites W2141157880 @default.
- W2891337907 cites W2162857792 @default.
- W2891337907 cites W2167942713 @default.
- W2891337907 cites W2168231626 @default.
- W2891337907 cites W2169589032 @default.
- W2891337907 cites W2171707538 @default.
- W2891337907 cites W2189560060 @default.
- W2891337907 cites W2235357440 @default.
- W2891337907 cites W2250020193 @default.
- W2891337907 cites W2272984102 @default.
- W2891337907 cites W2283622962 @default.
- W2891337907 cites W2303758877 @default.
- W2891337907 cites W2327437619 @default.
- W2891337907 cites W2346267653 @default.
- W2891337907 cites W2473039878 @default.
- W2891337907 cites W2537623931 @default.
- W2891337907 cites W2563484655 @default.
- W2891337907 cites W2570618306 @default.
- W2891337907 cites W2591177302 @default.
- W2891337907 cites W2604808360 @default.
- W2891337907 cites W2743914929 @default.
- W2891337907 cites W2763539776 @default.
- W2891337907 cites W2767891136 @default.
- W2891337907 cites W2790145453 @default.
- W2891337907 cites W2794851756 @default.
- W2891337907 cites W2801145513 @default.
- W2891337907 cites W2806013815 @default.
- W2891337907 cites W4294215472 @default.
- W2891337907 cites W4384455562 @default.
- W2891337907 doi "https://doi.org/10.1016/j.jbi.2018.09.004" @default.
- W2891337907 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30195659" @default.
- W2891337907 hasPublicationYear "2018" @default.
- W2891337907 type Work @default.
- W2891337907 sameAs 2891337907 @default.
- W2891337907 citedByCount "45" @default.
- W2891337907 countsByYear W28913379072019 @default.
- W2891337907 countsByYear W28913379072020 @default.
- W2891337907 countsByYear W28913379072021 @default.
- W2891337907 countsByYear W28913379072022 @default.
- W2891337907 countsByYear W28913379072023 @default.
- W2891337907 crossrefType "journal-article" @default.
- W2891337907 hasAuthorship W2891337907A5000281650 @default.