Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891344955> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2891344955 endingPage "33" @default.
- W2891344955 startingPage "21" @default.
- W2891344955 abstract "A great number of machine learning algorithms strongly depend on the underlying distance metric for representing the important correlations of input data. Distance metric learning is defined as learning an appropriate similarity or distance metric for all input data pairs. Metric learning algorithms are of supervised and unsupervised categories with different deterministic and probabilistic approaches. One of the objectives of unsupervised metric learning is to project data points into a new space in such a way that high clustering accuracy is provided. This is obtainable by maximizing between-clusters separation. There exist some deterministic metric learning methods to serve this purpose. In this article, a probabilistic method for unsupervised distance metric learning is proposed which aims to maximize the separability among different clusters in the projected space. In this proposed method, distance metric learning and fuzzy c-means clustering are jointly formulated in a sense that FCM provides clusters, and distance metric learning algorithm applies the obtained clusters to materialize the maximum separability among all; moreover, Markov Chain Monte Carlo (MCMC) algorithm is applied to infer the latent variables. This proposed method, not only can obtain a low dimensional projection with specified number of dimensions, but also it can learn the proper number of reduced dimensions for each dataset in an automated sense. The experimental results reveal the out-performance of this method on different real-world datasets against its counterparts." @default.
- W2891344955 created "2018-09-27" @default.
- W2891344955 creator A5023912669 @default.
- W2891344955 creator A5044179905 @default.
- W2891344955 creator A5057459254 @default.
- W2891344955 creator A5067878883 @default.
- W2891344955 date "2018-11-01" @default.
- W2891344955 modified "2023-09-26" @default.
- W2891344955 title "Bayesian distance metric learning for discriminative fuzzy c-means clustering" @default.
- W2891344955 cites W1963847195 @default.
- W2891344955 cites W1972908405 @default.
- W2891344955 cites W1995450389 @default.
- W2891344955 cites W2015966799 @default.
- W2891344955 cites W2019398771 @default.
- W2891344955 cites W2125027820 @default.
- W2891344955 cites W2266215408 @default.
- W2891344955 cites W2286652760 @default.
- W2891344955 cites W2560179635 @default.
- W2891344955 cites W370501591 @default.
- W2891344955 cites W4210880854 @default.
- W2891344955 cites W792551570 @default.
- W2891344955 doi "https://doi.org/10.1016/j.neucom.2018.08.071" @default.
- W2891344955 hasPublicationYear "2018" @default.
- W2891344955 type Work @default.
- W2891344955 sameAs 2891344955 @default.
- W2891344955 citedByCount "9" @default.
- W2891344955 countsByYear W28913449552019 @default.
- W2891344955 countsByYear W28913449552020 @default.
- W2891344955 countsByYear W28913449552021 @default.
- W2891344955 countsByYear W28913449552022 @default.
- W2891344955 countsByYear W28913449552023 @default.
- W2891344955 crossrefType "journal-article" @default.
- W2891344955 hasAuthorship W2891344955A5023912669 @default.
- W2891344955 hasAuthorship W2891344955A5044179905 @default.
- W2891344955 hasAuthorship W2891344955A5057459254 @default.
- W2891344955 hasAuthorship W2891344955A5067878883 @default.
- W2891344955 hasConcept C119857082 @default.
- W2891344955 hasConcept C153180895 @default.
- W2891344955 hasConcept C154945302 @default.
- W2891344955 hasConcept C162324750 @default.
- W2891344955 hasConcept C17212007 @default.
- W2891344955 hasConcept C176217482 @default.
- W2891344955 hasConcept C21547014 @default.
- W2891344955 hasConcept C33923547 @default.
- W2891344955 hasConcept C41008148 @default.
- W2891344955 hasConcept C49937458 @default.
- W2891344955 hasConcept C73555534 @default.
- W2891344955 hasConcept C8038995 @default.
- W2891344955 hasConceptScore W2891344955C119857082 @default.
- W2891344955 hasConceptScore W2891344955C153180895 @default.
- W2891344955 hasConceptScore W2891344955C154945302 @default.
- W2891344955 hasConceptScore W2891344955C162324750 @default.
- W2891344955 hasConceptScore W2891344955C17212007 @default.
- W2891344955 hasConceptScore W2891344955C176217482 @default.
- W2891344955 hasConceptScore W2891344955C21547014 @default.
- W2891344955 hasConceptScore W2891344955C33923547 @default.
- W2891344955 hasConceptScore W2891344955C41008148 @default.
- W2891344955 hasConceptScore W2891344955C49937458 @default.
- W2891344955 hasConceptScore W2891344955C73555534 @default.
- W2891344955 hasConceptScore W2891344955C8038995 @default.
- W2891344955 hasLocation W28913449551 @default.
- W2891344955 hasOpenAccess W2891344955 @default.
- W2891344955 hasPrimaryLocation W28913449551 @default.
- W2891344955 hasRelatedWork W3007915134 @default.
- W2891344955 hasRelatedWork W3046775127 @default.
- W2891344955 hasRelatedWork W3123344745 @default.
- W2891344955 hasRelatedWork W3196155444 @default.
- W2891344955 hasRelatedWork W3208099188 @default.
- W2891344955 hasRelatedWork W3209574120 @default.
- W2891344955 hasRelatedWork W4285260836 @default.
- W2891344955 hasRelatedWork W4306321456 @default.
- W2891344955 hasRelatedWork W4360764288 @default.
- W2891344955 hasRelatedWork W4367692580 @default.
- W2891344955 hasVolume "319" @default.
- W2891344955 isParatext "false" @default.
- W2891344955 isRetracted "false" @default.
- W2891344955 magId "2891344955" @default.
- W2891344955 workType "article" @default.