Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891346890> ?p ?o ?g. }
- W2891346890 endingPage "333" @default.
- W2891346890 startingPage "328" @default.
- W2891346890 abstract "Purpose To evaluate performance and the clinical impact of a novel machine learning based vessel-suppressing computer-aided detection (CAD) software in chest computed tomography (CT) of patients with malignant melanoma. Materials and methods We retrospectively included consecutive malignant melanoma patients with a chest CT between 01/2015 and 01/2016. Machine learning based CAD software was used to reconstruct additional vessel-suppressed axial images. Three radiologists independently reviewed a maximum of 15 lung nodules per patient. Vessel-suppressed reconstructions were reviewed independently and results were compared. Follow-up CT examinations and clinical follow-up were used to assess the outcome. Impact of additional nodules on clinical management was assessed. Results In 46 patients, vessel-suppressed axial images led to the detection of additional nodules in 25/46 (54.3%) patients. CT or clinical follow up was available in 25/25 (100%) patients with additionally detected nodules. 2/25 (8%) of these patients developed new pulmonary metastases. None of the additionally detected nodules were found to be metastases. None of the lung nodules detected by the radiologists was missed by the CAD software. The mean diameter of the 92 additional nodules was 1.5 ± 0.8 mm. The additional nodules did not affect therapeutic management. However, in 14/46 (30.4%) of patients the additional nodules might have had an impact on the radiological follow-up recommendations. Conclusion Machine learning based vessel suppression led to the detection of significantly more lung nodules in melanoma patients. Radiological follow-up recommendations were altered in 30% of the patients. However, all lung nodules turned out to be non-malignant on follow-up." @default.
- W2891346890 created "2018-09-27" @default.
- W2891346890 creator A5013597740 @default.
- W2891346890 creator A5018529123 @default.
- W2891346890 creator A5025122254 @default.
- W2891346890 creator A5042237121 @default.
- W2891346890 creator A5046078243 @default.
- W2891346890 creator A5049149365 @default.
- W2891346890 creator A5056167762 @default.
- W2891346890 creator A5064555461 @default.
- W2891346890 creator A5070597036 @default.
- W2891346890 creator A5089034568 @default.
- W2891346890 date "2018-11-01" @default.
- W2891346890 modified "2023-09-27" @default.
- W2891346890 title "Performance and clinical impact of machine learning based lung nodule detection using vessel suppression in melanoma patients" @default.
- W2891346890 cites W158268157 @default.
- W2891346890 cites W1919811975 @default.
- W2891346890 cites W1969870772 @default.
- W2891346890 cites W1974994731 @default.
- W2891346890 cites W1977465597 @default.
- W2891346890 cites W1986050565 @default.
- W2891346890 cites W1990981865 @default.
- W2891346890 cites W1997706498 @default.
- W2891346890 cites W2012355247 @default.
- W2891346890 cites W2023385105 @default.
- W2891346890 cites W2023522838 @default.
- W2891346890 cites W2025484976 @default.
- W2891346890 cites W2048561164 @default.
- W2891346890 cites W2048589595 @default.
- W2891346890 cites W2061383517 @default.
- W2891346890 cites W2063711055 @default.
- W2891346890 cites W2071717081 @default.
- W2891346890 cites W2086762240 @default.
- W2891346890 cites W2094865209 @default.
- W2891346890 cites W2111209861 @default.
- W2891346890 cites W2118863192 @default.
- W2891346890 cites W2159866604 @default.
- W2891346890 cites W2491896449 @default.
- W2891346890 cites W2587019480 @default.
- W2891346890 cites W2594318146 @default.
- W2891346890 cites W2594345833 @default.
- W2891346890 cites W2773099936 @default.
- W2891346890 cites W4238123838 @default.
- W2891346890 doi "https://doi.org/10.1016/j.clinimag.2018.09.001" @default.
- W2891346890 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30236779" @default.
- W2891346890 hasPublicationYear "2018" @default.
- W2891346890 type Work @default.
- W2891346890 sameAs 2891346890 @default.
- W2891346890 citedByCount "14" @default.
- W2891346890 countsByYear W28913468902019 @default.
- W2891346890 countsByYear W28913468902020 @default.
- W2891346890 countsByYear W28913468902021 @default.
- W2891346890 countsByYear W28913468902022 @default.
- W2891346890 countsByYear W28913468902023 @default.
- W2891346890 crossrefType "journal-article" @default.
- W2891346890 hasAuthorship W2891346890A5013597740 @default.
- W2891346890 hasAuthorship W2891346890A5018529123 @default.
- W2891346890 hasAuthorship W2891346890A5025122254 @default.
- W2891346890 hasAuthorship W2891346890A5042237121 @default.
- W2891346890 hasAuthorship W2891346890A5046078243 @default.
- W2891346890 hasAuthorship W2891346890A5049149365 @default.
- W2891346890 hasAuthorship W2891346890A5056167762 @default.
- W2891346890 hasAuthorship W2891346890A5064555461 @default.
- W2891346890 hasAuthorship W2891346890A5070597036 @default.
- W2891346890 hasAuthorship W2891346890A5089034568 @default.
- W2891346890 hasConcept C126322002 @default.
- W2891346890 hasConcept C126838900 @default.
- W2891346890 hasConcept C151730666 @default.
- W2891346890 hasConcept C190892606 @default.
- W2891346890 hasConcept C2776731575 @default.
- W2891346890 hasConcept C2777658100 @default.
- W2891346890 hasConcept C2777714996 @default.
- W2891346890 hasConcept C502942594 @default.
- W2891346890 hasConcept C71924100 @default.
- W2891346890 hasConcept C86803240 @default.
- W2891346890 hasConceptScore W2891346890C126322002 @default.
- W2891346890 hasConceptScore W2891346890C126838900 @default.
- W2891346890 hasConceptScore W2891346890C151730666 @default.
- W2891346890 hasConceptScore W2891346890C190892606 @default.
- W2891346890 hasConceptScore W2891346890C2776731575 @default.
- W2891346890 hasConceptScore W2891346890C2777658100 @default.
- W2891346890 hasConceptScore W2891346890C2777714996 @default.
- W2891346890 hasConceptScore W2891346890C502942594 @default.
- W2891346890 hasConceptScore W2891346890C71924100 @default.
- W2891346890 hasConceptScore W2891346890C86803240 @default.
- W2891346890 hasLocation W28913468901 @default.
- W2891346890 hasLocation W28913468902 @default.
- W2891346890 hasOpenAccess W2891346890 @default.
- W2891346890 hasPrimaryLocation W28913468901 @default.
- W2891346890 hasRelatedWork W2031341258 @default.
- W2891346890 hasRelatedWork W2322525259 @default.
- W2891346890 hasRelatedWork W2323943981 @default.
- W2891346890 hasRelatedWork W2419079049 @default.
- W2891346890 hasRelatedWork W2981372661 @default.
- W2891346890 hasRelatedWork W4205361111 @default.
- W2891346890 hasRelatedWork W4230958028 @default.
- W2891346890 hasRelatedWork W4285733903 @default.
- W2891346890 hasRelatedWork W4318302273 @default.