Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891362102> ?p ?o ?g. }
- W2891362102 abstract "Extracting styles of handwriting is a challenging problem, since the style themselves are not well defined. It is a key component to develop systems with more personalized experiences for humans. In this paper, we propose baseline benchmarks, in order to set anchors to estimate the relative quality of different handwriting style methods. This will be done using deep learning techniques, which have shown remarkable results in different machine learning tasks, learning classification, regression, and most relevant to our work, generating temporal sequences. We discuss the challenges associated with evaluating our methods, which is related to evaluation of generative models in general. We then propose evaluation metrics, which we find relevant to this problem, and we discuss how we evaluate the performance metrics. In this study, we use IRON-OFF dataset [1]. To the best of our knowledge, no existing benchmarks or evaluation metrics for this task exit yet, and this dataset has not been used before in the context of handwriting synthesis." @default.
- W2891362102 created "2018-09-27" @default.
- W2891362102 creator A5034827570 @default.
- W2891362102 creator A5050184071 @default.
- W2891362102 creator A5058458310 @default.
- W2891362102 date "2018-10-01" @default.
- W2891362102 modified "2023-10-15" @default.
- W2891362102 title "Handwriting Styles: Benchmarks and Evaluation Metrics" @default.
- W2891362102 cites W1579853615 @default.
- W2891362102 cites W1810943226 @default.
- W2891362102 cites W1895577753 @default.
- W2891362102 cites W1905882502 @default.
- W2891362102 cites W1916559533 @default.
- W2891362102 cites W1924770834 @default.
- W2891362102 cites W1959608418 @default.
- W2891362102 cites W196214544 @default.
- W2891362102 cites W2007714563 @default.
- W2891362102 cites W2064675550 @default.
- W2891362102 cites W2077863651 @default.
- W2891362102 cites W2097039814 @default.
- W2891362102 cites W2099471712 @default.
- W2891362102 cites W2101105183 @default.
- W2891362102 cites W2123301721 @default.
- W2891362102 cites W2130942839 @default.
- W2891362102 cites W2157331557 @default.
- W2891362102 cites W2170633497 @default.
- W2891362102 cites W2187089797 @default.
- W2891362102 cites W2267126114 @default.
- W2891362102 cites W2794490148 @default.
- W2891362102 cites W2949382160 @default.
- W2891362102 cites W2963702081 @default.
- W2891362102 cites W2963927338 @default.
- W2891362102 cites W2964121744 @default.
- W2891362102 cites W3099206234 @default.
- W2891362102 cites W3099425575 @default.
- W2891362102 cites W1857789879 @default.
- W2891362102 doi "https://doi.org/10.1109/snams.2018.8554834" @default.
- W2891362102 hasPublicationYear "2018" @default.
- W2891362102 type Work @default.
- W2891362102 sameAs 2891362102 @default.
- W2891362102 citedByCount "0" @default.
- W2891362102 crossrefType "proceedings-article" @default.
- W2891362102 hasAuthorship W2891362102A5034827570 @default.
- W2891362102 hasAuthorship W2891362102A5050184071 @default.
- W2891362102 hasAuthorship W2891362102A5058458310 @default.
- W2891362102 hasBestOaLocation W28913621022 @default.
- W2891362102 hasConcept C111368507 @default.
- W2891362102 hasConcept C111472728 @default.
- W2891362102 hasConcept C119857082 @default.
- W2891362102 hasConcept C121332964 @default.
- W2891362102 hasConcept C12725497 @default.
- W2891362102 hasConcept C127313418 @default.
- W2891362102 hasConcept C138885662 @default.
- W2891362102 hasConcept C151730666 @default.
- W2891362102 hasConcept C154945302 @default.
- W2891362102 hasConcept C162324750 @default.
- W2891362102 hasConcept C168167062 @default.
- W2891362102 hasConcept C177264268 @default.
- W2891362102 hasConcept C187736073 @default.
- W2891362102 hasConcept C199360897 @default.
- W2891362102 hasConcept C26517878 @default.
- W2891362102 hasConcept C2779343474 @default.
- W2891362102 hasConcept C2779386606 @default.
- W2891362102 hasConcept C2779530757 @default.
- W2891362102 hasConcept C2780451532 @default.
- W2891362102 hasConcept C38652104 @default.
- W2891362102 hasConcept C39890363 @default.
- W2891362102 hasConcept C41008148 @default.
- W2891362102 hasConcept C86803240 @default.
- W2891362102 hasConcept C97355855 @default.
- W2891362102 hasConceptScore W2891362102C111368507 @default.
- W2891362102 hasConceptScore W2891362102C111472728 @default.
- W2891362102 hasConceptScore W2891362102C119857082 @default.
- W2891362102 hasConceptScore W2891362102C121332964 @default.
- W2891362102 hasConceptScore W2891362102C12725497 @default.
- W2891362102 hasConceptScore W2891362102C127313418 @default.
- W2891362102 hasConceptScore W2891362102C138885662 @default.
- W2891362102 hasConceptScore W2891362102C151730666 @default.
- W2891362102 hasConceptScore W2891362102C154945302 @default.
- W2891362102 hasConceptScore W2891362102C162324750 @default.
- W2891362102 hasConceptScore W2891362102C168167062 @default.
- W2891362102 hasConceptScore W2891362102C177264268 @default.
- W2891362102 hasConceptScore W2891362102C187736073 @default.
- W2891362102 hasConceptScore W2891362102C199360897 @default.
- W2891362102 hasConceptScore W2891362102C26517878 @default.
- W2891362102 hasConceptScore W2891362102C2779343474 @default.
- W2891362102 hasConceptScore W2891362102C2779386606 @default.
- W2891362102 hasConceptScore W2891362102C2779530757 @default.
- W2891362102 hasConceptScore W2891362102C2780451532 @default.
- W2891362102 hasConceptScore W2891362102C38652104 @default.
- W2891362102 hasConceptScore W2891362102C39890363 @default.
- W2891362102 hasConceptScore W2891362102C41008148 @default.
- W2891362102 hasConceptScore W2891362102C86803240 @default.
- W2891362102 hasConceptScore W2891362102C97355855 @default.
- W2891362102 hasLocation W28913621021 @default.
- W2891362102 hasLocation W28913621022 @default.
- W2891362102 hasLocation W28913621023 @default.
- W2891362102 hasLocation W28913621024 @default.
- W2891362102 hasLocation W28913621025 @default.
- W2891362102 hasLocation W28913621026 @default.