Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891363744> ?p ?o ?g. }
- W2891363744 endingPage "564" @default.
- W2891363744 startingPage "548" @default.
- W2891363744 abstract "Quantitative image analysis has deep roots in the usage of positron emission tomography (PET) in clinical and research settings to address a wide variety of diseases. It has been extensively employed to assess molecular and physiological biomarkers in vivo in healthy and disease states, in oncology, cardiology, neurology, and psychiatry. Quantitative PET allows relating the time-varying activity concentration in tissues/organs of interest and the basic functional parameters governing the biological processes being studied. Yet, quantitative PET is challenged by a number of degrading physical factors related to the physics of PET imaging, the limitations of the instrumentation used, and the physiological status of the patient. Moreover, there is no consensus on the most reliable and robust image-derived PET metric(s) that can be used with confidence in clinical oncology owing to the discrepancies between the conclusions reported in the literature. There is also increasing interest in the use of artificial intelligence based techniques, particularly machine learning and deep learning techniques in a variety of applications to extract quantitative features (radiomics) from PET including image segmentation and outcome prediction in clinical oncology. These novel techniques are revolutionizing clinical practice and are now offering unique capabilities to the clinical molecular imaging community and biomedical researchers at large. In this report, we summarize recent developments and future tendencies in quantitative PET imaging and present example applications in clinical decision support to illustrate its potential in the context of clinical oncology." @default.
- W2891363744 created "2018-09-27" @default.
- W2891363744 creator A5007891293 @default.
- W2891363744 creator A5010597773 @default.
- W2891363744 creator A5088003622 @default.
- W2891363744 date "2018-11-01" @default.
- W2891363744 modified "2023-10-14" @default.
- W2891363744 title "Novel Quantitative PET Techniques for Clinical Decision Support in Oncology" @default.
- W2891363744 cites W1895479737 @default.
- W2891363744 cites W1965188539 @default.
- W2891363744 cites W1966511552 @default.
- W2891363744 cites W1981024909 @default.
- W2891363744 cites W1987002881 @default.
- W2891363744 cites W1989888708 @default.
- W2891363744 cites W1991715141 @default.
- W2891363744 cites W2002691710 @default.
- W2891363744 cites W2008108075 @default.
- W2891363744 cites W2012060232 @default.
- W2891363744 cites W2012437716 @default.
- W2891363744 cites W2014844346 @default.
- W2891363744 cites W2015243955 @default.
- W2891363744 cites W2018918792 @default.
- W2891363744 cites W2020003931 @default.
- W2891363744 cites W2029429452 @default.
- W2891363744 cites W2029854421 @default.
- W2891363744 cites W2033973189 @default.
- W2891363744 cites W2036746311 @default.
- W2891363744 cites W2041070093 @default.
- W2891363744 cites W2041112729 @default.
- W2891363744 cites W2044465660 @default.
- W2891363744 cites W2050946937 @default.
- W2891363744 cites W2051228374 @default.
- W2891363744 cites W2063171967 @default.
- W2891363744 cites W2066873375 @default.
- W2891363744 cites W2068844783 @default.
- W2891363744 cites W2072177458 @default.
- W2891363744 cites W2074445922 @default.
- W2891363744 cites W2075188560 @default.
- W2891363744 cites W2080965354 @default.
- W2891363744 cites W2081101007 @default.
- W2891363744 cites W2081627468 @default.
- W2891363744 cites W2083862835 @default.
- W2891363744 cites W2085075503 @default.
- W2891363744 cites W2086380649 @default.
- W2891363744 cites W2086703239 @default.
- W2891363744 cites W2097475056 @default.
- W2891363744 cites W2097918071 @default.
- W2891363744 cites W2098216041 @default.
- W2891363744 cites W2100858680 @default.
- W2891363744 cites W2106016913 @default.
- W2891363744 cites W2109738229 @default.
- W2891363744 cites W2112109302 @default.
- W2891363744 cites W2112814674 @default.
- W2891363744 cites W2115563908 @default.
- W2891363744 cites W2116531960 @default.
- W2891363744 cites W2117251230 @default.
- W2891363744 cites W2117521632 @default.
- W2891363744 cites W2119665225 @default.
- W2891363744 cites W2125016105 @default.
- W2891363744 cites W2126831910 @default.
- W2891363744 cites W2141619730 @default.
- W2891363744 cites W2147745144 @default.
- W2891363744 cites W2153563443 @default.
- W2891363744 cites W2155263737 @default.
- W2891363744 cites W2169303544 @default.
- W2891363744 cites W2174661749 @default.
- W2891363744 cites W2267700533 @default.
- W2891363744 cites W2273987517 @default.
- W2891363744 cites W2287231805 @default.
- W2891363744 cites W2409649574 @default.
- W2891363744 cites W2444024653 @default.
- W2891363744 cites W2463594856 @default.
- W2891363744 cites W2523312410 @default.
- W2891363744 cites W2582769321 @default.
- W2891363744 cites W2584323939 @default.
- W2891363744 cites W2600642189 @default.
- W2891363744 cites W2621243763 @default.
- W2891363744 cites W2622786780 @default.
- W2891363744 cites W2623144351 @default.
- W2891363744 cites W2725801426 @default.
- W2891363744 cites W2730557609 @default.
- W2891363744 cites W2758460516 @default.
- W2891363744 cites W2763907409 @default.
- W2891363744 cites W2764060064 @default.
- W2891363744 cites W2766329790 @default.
- W2891363744 cites W2768342898 @default.
- W2891363744 cites W2773727367 @default.
- W2891363744 cites W2791892154 @default.
- W2891363744 cites W2795013574 @default.
- W2891363744 cites W2919115771 @default.
- W2891363744 cites W783453938 @default.
- W2891363744 doi "https://doi.org/10.1053/j.semnuclmed.2018.07.003" @default.
- W2891363744 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30322481" @default.
- W2891363744 hasPublicationYear "2018" @default.
- W2891363744 type Work @default.
- W2891363744 sameAs 2891363744 @default.
- W2891363744 citedByCount "20" @default.
- W2891363744 countsByYear W28913637442018 @default.