Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891365809> ?p ?o ?g. }
- W2891365809 endingPage "33251" @default.
- W2891365809 startingPage "33238" @default.
- W2891365809 abstract "Since the first reports of Cu dendrimer-encapsulated nanoparticles (DENs) published in 1998, the dendrimer-templating method has become the best and most versatile method for preparing ultrafine metallic and bimetallic nanoparticles (1–3 nm) with well-defined compositions, high catalytic activity, and tunable selectivity. However, DENs have remained for the most part model systems with limited prospects for scale up and integration into high-performance and reusable catalytic modules and systems for industrial-scale applications. Here, we describe a facile and scalable route to the preparation of catalytic polyvinylidene fluoride (PVDF) membranes with in situ synthesized supramolecular dendrimer particles (SDPs) that can serve as hosts and containers for Pt(0) nanoparticles (2–3 nm). These new catalytic membranes were prepared using a reactive encapsulation process similar to that utilized to prepare Pt DENs by addition of a reducing agent (sodium borohydride) to aqueous complexes of Pt(II) + G4-OH/G6-OH polyamidoamine (PAMAM) dendrimers. However, the SDPs (2.4 μm average diameter) of our new mixed matrix PVDF–PAMAM membranes were synthesized in the dope dispersion without purification prior to film casting using (i) a low-generation PAMAM dendrimer (G1-NH2) as particle precursor and (ii) epichlorohydrin, an inexpensive functional reagent, as cross-linker. In addition, the membrane PAMAM particles contain secondary amine groups (∼1.9 mequiv per gram of dry membrane), which are more basic and thus have higher Pt binding affinity than the tertiary amine groups of the G4-OH and G6-OH PAMAM dendrimers. Proof-of-concept experiments show that our new PVDF–PAMAM-G1-Pt/membranes can serve as highly active and reusable catalysts for the hydrogenation of alkenes and alkynes to the corresponding alkanes using (i) H2 at room temperature and a pressure of 1 bar and (ii) low catalyst loadings of ∼1.4–1.6 mg of Pt. Using cyclohexene as model substrate, we observed near quantitative conversion to cyclohexane (∼98%). The regeneration studies showed that our new Pt/membrane catalysts are stable and can be reused for five consecutive reaction cycles for a total duration of 120 h including 60 h of heating at 100 °C under vacuum for substrate, product, and solvent removal with no detectable loss of cyclohexene hydrogenation activity. The overall results of our study point to a promising, versatile, and scalable path for the integration of catalytic membranes with in situ synthesized SDP hosts for Pt(0) nanoparticles into high-throughput modules and systems for heterogeneous catalytic hydrogenations, an important class of reactions that are widely utilized in industry to produce pharmaceuticals, agrochemicals, and specialty chemicals." @default.
- W2891365809 created "2018-09-27" @default.
- W2891365809 creator A5013606533 @default.
- W2891365809 creator A5015301541 @default.
- W2891365809 creator A5020871620 @default.
- W2891365809 creator A5027891269 @default.
- W2891365809 creator A5029392873 @default.
- W2891365809 creator A5084754197 @default.
- W2891365809 date "2018-09-10" @default.
- W2891365809 modified "2023-09-26" @default.
- W2891365809 title "A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH<sub>2</sub>) as Precursor" @default.
- W2891365809 cites W1536751418 @default.
- W2891365809 cites W1549005888 @default.
- W2891365809 cites W1975183014 @default.
- W2891365809 cites W1980818493 @default.
- W2891365809 cites W1984646865 @default.
- W2891365809 cites W1998544734 @default.
- W2891365809 cites W2002099401 @default.
- W2891365809 cites W2022650937 @default.
- W2891365809 cites W2024285405 @default.
- W2891365809 cites W2034601052 @default.
- W2891365809 cites W2037640404 @default.
- W2891365809 cites W2037879281 @default.
- W2891365809 cites W2043373455 @default.
- W2891365809 cites W2050181615 @default.
- W2891365809 cites W2054309423 @default.
- W2891365809 cites W2061590003 @default.
- W2891365809 cites W2061971016 @default.
- W2891365809 cites W2062268132 @default.
- W2891365809 cites W2063832417 @default.
- W2891365809 cites W2067898557 @default.
- W2891365809 cites W2075477371 @default.
- W2891365809 cites W2076654637 @default.
- W2891365809 cites W2080643832 @default.
- W2891365809 cites W2081100315 @default.
- W2891365809 cites W2083478499 @default.
- W2891365809 cites W2092738918 @default.
- W2891365809 cites W2093211036 @default.
- W2891365809 cites W2094703768 @default.
- W2891365809 cites W2095146078 @default.
- W2891365809 cites W2100496925 @default.
- W2891365809 cites W2121877104 @default.
- W2891365809 cites W2125378157 @default.
- W2891365809 cites W2130880946 @default.
- W2891365809 cites W2133224491 @default.
- W2891365809 cites W2136581358 @default.
- W2891365809 cites W2162741644 @default.
- W2891365809 cites W2165075369 @default.
- W2891365809 cites W2171157538 @default.
- W2891365809 cites W2236265427 @default.
- W2891365809 cites W2266564964 @default.
- W2891365809 cites W2327049627 @default.
- W2891365809 cites W2328675963 @default.
- W2891365809 cites W2330953504 @default.
- W2891365809 cites W2333192276 @default.
- W2891365809 cites W2523668773 @default.
- W2891365809 cites W2532166291 @default.
- W2891365809 cites W2574743877 @default.
- W2891365809 cites W2580300294 @default.
- W2891365809 cites W2584458145 @default.
- W2891365809 cites W2602264501 @default.
- W2891365809 cites W2604189191 @default.
- W2891365809 cites W2625153997 @default.
- W2891365809 cites W2742638984 @default.
- W2891365809 cites W46397436 @default.
- W2891365809 doi "https://doi.org/10.1021/acsami.8b11351" @default.
- W2891365809 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30199628" @default.
- W2891365809 hasPublicationYear "2018" @default.
- W2891365809 type Work @default.
- W2891365809 sameAs 2891365809 @default.
- W2891365809 citedByCount "9" @default.
- W2891365809 countsByYear W28913658092019 @default.
- W2891365809 countsByYear W28913658092020 @default.
- W2891365809 countsByYear W28913658092021 @default.
- W2891365809 countsByYear W28913658092022 @default.
- W2891365809 countsByYear W28913658092023 @default.
- W2891365809 crossrefType "journal-article" @default.
- W2891365809 hasAuthorship W2891365809A5013606533 @default.
- W2891365809 hasAuthorship W2891365809A5015301541 @default.
- W2891365809 hasAuthorship W2891365809A5020871620 @default.
- W2891365809 hasAuthorship W2891365809A5027891269 @default.
- W2891365809 hasAuthorship W2891365809A5029392873 @default.
- W2891365809 hasAuthorship W2891365809A5084754197 @default.
- W2891365809 hasBestOaLocation W28913658092 @default.
- W2891365809 hasConcept C127413603 @default.
- W2891365809 hasConcept C131779359 @default.
- W2891365809 hasConcept C155672457 @default.
- W2891365809 hasConcept C161790260 @default.
- W2891365809 hasConcept C171250308 @default.
- W2891365809 hasConcept C178790620 @default.
- W2891365809 hasConcept C185592680 @default.
- W2891365809 hasConcept C188027245 @default.
- W2891365809 hasConcept C192562407 @default.
- W2891365809 hasConcept C41625074 @default.
- W2891365809 hasConcept C42360764 @default.
- W2891365809 hasConcept C43411465 @default.
- W2891365809 hasConcept C55493867 @default.
- W2891365809 hasConcept C55637122 @default.