Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891373952> ?p ?o ?g. }
- W2891373952 endingPage "1869" @default.
- W2891373952 startingPage "1856" @default.
- W2891373952 abstract "The space of graphs is often characterized by a nontrivial geometry, which complicates learning and inference in practical applications. A common approach is to use embedding techniques to represent graphs as points in a conventional Euclidean space, but non-Euclidean spaces have often been shown to be better suited for embedding graphs. Among these, constant-curvature Riemannian manifolds (CCMs) offer embedding spaces suitable for studying the statistical properties of a graph distribution, as they provide ways to easily compute metric geodesic distances. In this paper, we focus on the problem of detecting changes in stationarity in a stream of attributed graphs. To this end, we introduce a novel change detection framework based on neural networks and CCMs, which takes into account the non-Euclidean nature of graphs. Our contribution in this paper is twofold. First, via a novel approach based on adversarial learning, we compute graph embeddings by training an autoencoder to represent graphs on CCMs. Second, we introduce two novel change detection tests operating on CCMs. We perform experiments on synthetic data, as well as two real-world application scenarios: the detection of epileptic seizures using functional connectivity brain networks and the detection of hostility between two subjects, using human skeletal graphs. Results show that the proposed methods are able to detect even small changes in a graph-generating process, consistently outperforming approaches based on Euclidean embeddings." @default.
- W2891373952 created "2018-09-27" @default.
- W2891373952 creator A5005003786 @default.
- W2891373952 creator A5059650498 @default.
- W2891373952 creator A5063275405 @default.
- W2891373952 creator A5078445362 @default.
- W2891373952 date "2020-06-01" @default.
- W2891373952 modified "2023-10-11" @default.
- W2891373952 title "Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds" @default.
- W2891373952 cites W1625958017 @default.
- W2891373952 cites W1753821802 @default.
- W2891373952 cites W1904826605 @default.
- W2891373952 cites W1972978214 @default.
- W2891373952 cites W1999418377 @default.
- W2891373952 cites W2003627696 @default.
- W2891373952 cites W2014886698 @default.
- W2891373952 cites W2028637253 @default.
- W2891373952 cites W2051903196 @default.
- W2891373952 cites W2089554624 @default.
- W2891373952 cites W2093168265 @default.
- W2891373952 cites W2125003829 @default.
- W2891373952 cites W2227520796 @default.
- W2891373952 cites W2289831356 @default.
- W2891373952 cites W2476479720 @default.
- W2891373952 cites W2487327602 @default.
- W2891373952 cites W2558748708 @default.
- W2891373952 cites W2606202972 @default.
- W2891373952 cites W2609848772 @default.
- W2891373952 cites W2669485504 @default.
- W2891373952 cites W2808409763 @default.
- W2891373952 cites W2949963517 @default.
- W2891373952 cites W2964134613 @default.
- W2891373952 cites W2964231450 @default.
- W2891373952 cites W3083538725 @default.
- W2891373952 cites W3101016176 @default.
- W2891373952 cites W3102446989 @default.
- W2891373952 cites W4206409740 @default.
- W2891373952 cites W4238452917 @default.
- W2891373952 cites W4289436753 @default.
- W2891373952 doi "https://doi.org/10.1109/tnnls.2019.2927301" @default.
- W2891373952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31380770" @default.
- W2891373952 hasPublicationYear "2020" @default.
- W2891373952 type Work @default.
- W2891373952 sameAs 2891373952 @default.
- W2891373952 citedByCount "17" @default.
- W2891373952 countsByYear W28913739522019 @default.
- W2891373952 countsByYear W28913739522020 @default.
- W2891373952 countsByYear W28913739522021 @default.
- W2891373952 countsByYear W28913739522022 @default.
- W2891373952 countsByYear W28913739522023 @default.
- W2891373952 crossrefType "journal-article" @default.
- W2891373952 hasAuthorship W2891373952A5005003786 @default.
- W2891373952 hasAuthorship W2891373952A5059650498 @default.
- W2891373952 hasAuthorship W2891373952A5063275405 @default.
- W2891373952 hasAuthorship W2891373952A5078445362 @default.
- W2891373952 hasBestOaLocation W28913739522 @default.
- W2891373952 hasConcept C11413529 @default.
- W2891373952 hasConcept C114614502 @default.
- W2891373952 hasConcept C132525143 @default.
- W2891373952 hasConcept C134306372 @default.
- W2891373952 hasConcept C154945302 @default.
- W2891373952 hasConcept C165818556 @default.
- W2891373952 hasConcept C180222743 @default.
- W2891373952 hasConcept C186450821 @default.
- W2891373952 hasConcept C195065555 @default.
- W2891373952 hasConcept C203776342 @default.
- W2891373952 hasConcept C2524010 @default.
- W2891373952 hasConcept C2779668893 @default.
- W2891373952 hasConcept C33923547 @default.
- W2891373952 hasConcept C41008148 @default.
- W2891373952 hasConcept C41608201 @default.
- W2891373952 hasConcept C43517604 @default.
- W2891373952 hasConcept C75564084 @default.
- W2891373952 hasConcept C80444323 @default.
- W2891373952 hasConceptScore W2891373952C11413529 @default.
- W2891373952 hasConceptScore W2891373952C114614502 @default.
- W2891373952 hasConceptScore W2891373952C132525143 @default.
- W2891373952 hasConceptScore W2891373952C134306372 @default.
- W2891373952 hasConceptScore W2891373952C154945302 @default.
- W2891373952 hasConceptScore W2891373952C165818556 @default.
- W2891373952 hasConceptScore W2891373952C180222743 @default.
- W2891373952 hasConceptScore W2891373952C186450821 @default.
- W2891373952 hasConceptScore W2891373952C195065555 @default.
- W2891373952 hasConceptScore W2891373952C203776342 @default.
- W2891373952 hasConceptScore W2891373952C2524010 @default.
- W2891373952 hasConceptScore W2891373952C2779668893 @default.
- W2891373952 hasConceptScore W2891373952C33923547 @default.
- W2891373952 hasConceptScore W2891373952C41008148 @default.
- W2891373952 hasConceptScore W2891373952C41608201 @default.
- W2891373952 hasConceptScore W2891373952C43517604 @default.
- W2891373952 hasConceptScore W2891373952C75564084 @default.
- W2891373952 hasConceptScore W2891373952C80444323 @default.
- W2891373952 hasFunder F4320320994 @default.
- W2891373952 hasIssue "6" @default.
- W2891373952 hasLocation W28913739521 @default.
- W2891373952 hasLocation W28913739522 @default.
- W2891373952 hasLocation W28913739523 @default.
- W2891373952 hasLocation W28913739524 @default.