Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891377710> ?p ?o ?g. }
- W2891377710 endingPage "e11301" @default.
- W2891377710 startingPage "e11301" @default.
- W2891377710 abstract "In the United States, a rare disease is characterized as the one affecting no more than 200,000 patients at a certain period. Patients suffering from rare diseases are often either misdiagnosed or left undiagnosed, possibly due to insufficient knowledge or experience with the rare disease on the part of clinical practitioners. With an exponentially growing volume of electronically accessible medical data, a large volume of information on thousands of rare diseases and their potentially associated diagnostic information is buried in electronic medical records (EMRs) and medical literature.This study aimed to leverage information contained in heterogeneous datasets to assist rare disease diagnosis. Phenotypic information of patients existed in EMRs and biomedical literature could be fully leveraged to speed up diagnosis of diseases.In our previous work, we advanced the use of a collaborative filtering recommendation system to support rare disease diagnostic decision making based on phenotypes derived solely from EMR data. However, the influence of using heterogeneous data with collaborative filtering was not discussed, which is an essential problem while facing large volumes of data from various resources. In this study, to further investigate the performance of collaborative filtering on heterogeneous datasets, we studied EMR data generated at Mayo Clinic as well as published article abstracts retrieved from the Semantic MEDLINE Database. Specifically, in this study, we designed different data fusion strategies from heterogeneous resources and integrated them with the collaborative filtering model.We evaluated performance of the proposed system using characterizations derived from various combinations of EMR data and literature, as well as with sole EMR data. We extracted nearly 13 million EMRs from the patient cohort generated between 2010 and 2015 at Mayo Clinic and retrieved all article abstracts from the semistructured Semantic MEDLINE Database that were published till the end of 2016. We applied a collaborative filtering model and compared the performance generated by different metrics. Log likelihood ratio similarity combined with k-nearest neighbor on heterogeneous datasets showed the optimal performance in patient recommendation with area under the precision-recall curve (PRAUC) 0.475 (string match), 0.511 (systematized nomenclature of medicine [SNOMED] match), and 0.752 (Genetic and Rare Diseases Information Center [GARD] match). Log likelihood ratio similarity also performed the best with mean average precision 0.465 (string match), 0.5 (SNOMED match), and 0.749 (GARD match). Performance of rare disease prediction was also demonstrated by using the optimal algorithm. Macro-average F-measure for string, SNOMED, and GARD match were 0.32, 0.42, and 0.63, respectively.This study demonstrated potential utilization of heterogeneous datasets in a collaborative filtering model to support rare disease diagnosis. In addition to phenotypic-based analysis, in the future, we plan to further resolve the heterogeneity issue and reduce miscommunication between EMR and literature by mining genotypic information to establish a comprehensive disease-phenotype-gene network for rare disease diagnosis." @default.
- W2891377710 created "2018-09-27" @default.
- W2891377710 creator A5002976916 @default.
- W2891377710 creator A5003128469 @default.
- W2891377710 creator A5027449919 @default.
- W2891377710 creator A5055723755 @default.
- W2891377710 creator A5080116611 @default.
- W2891377710 creator A5087033178 @default.
- W2891377710 date "2018-10-10" @default.
- W2891377710 modified "2023-10-16" @default.
- W2891377710 title "Utilization of Electronic Medical Records and Biomedical Literature to Support the Diagnosis of Rare Diseases Using Data Fusion and Collaborative Filtering Approaches" @default.
- W2891377710 cites W1555863444 @default.
- W2891377710 cites W1626203958 @default.
- W2891377710 cites W1821527815 @default.
- W2891377710 cites W1867003806 @default.
- W2891377710 cites W1964986019 @default.
- W2891377710 cites W1973486624 @default.
- W2891377710 cites W2043403353 @default.
- W2891377710 cites W2048495389 @default.
- W2891377710 cites W2098201295 @default.
- W2891377710 cites W2099866409 @default.
- W2891377710 cites W2109429447 @default.
- W2891377710 cites W2111437636 @default.
- W2891377710 cites W2117446654 @default.
- W2891377710 cites W2119647569 @default.
- W2891377710 cites W2129922540 @default.
- W2891377710 cites W2133160781 @default.
- W2891377710 cites W2143448637 @default.
- W2891377710 cites W2146512693 @default.
- W2891377710 cites W2152449788 @default.
- W2891377710 cites W2159094788 @default.
- W2891377710 cites W2411105948 @default.
- W2891377710 cites W2517617411 @default.
- W2891377710 cites W2787017859 @default.
- W2891377710 cites W2787022481 @default.
- W2891377710 cites W2883157666 @default.
- W2891377710 cites W2962756421 @default.
- W2891377710 cites W2963923670 @default.
- W2891377710 cites W4318443203 @default.
- W2891377710 cites W2209024493 @default.
- W2891377710 doi "https://doi.org/10.2196/11301" @default.
- W2891377710 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6231873" @default.
- W2891377710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30305261" @default.
- W2891377710 hasPublicationYear "2018" @default.
- W2891377710 type Work @default.
- W2891377710 sameAs 2891377710 @default.
- W2891377710 citedByCount "25" @default.
- W2891377710 countsByYear W28913777102019 @default.
- W2891377710 countsByYear W28913777102020 @default.
- W2891377710 countsByYear W28913777102021 @default.
- W2891377710 countsByYear W28913777102022 @default.
- W2891377710 countsByYear W28913777102023 @default.
- W2891377710 crossrefType "journal-article" @default.
- W2891377710 hasAuthorship W2891377710A5002976916 @default.
- W2891377710 hasAuthorship W2891377710A5003128469 @default.
- W2891377710 hasAuthorship W2891377710A5027449919 @default.
- W2891377710 hasAuthorship W2891377710A5055723755 @default.
- W2891377710 hasAuthorship W2891377710A5080116611 @default.
- W2891377710 hasAuthorship W2891377710A5087033178 @default.
- W2891377710 hasBestOaLocation W28913777101 @default.
- W2891377710 hasConcept C108827166 @default.
- W2891377710 hasConcept C124101348 @default.
- W2891377710 hasConcept C141071460 @default.
- W2891377710 hasConcept C142724271 @default.
- W2891377710 hasConcept C153083717 @default.
- W2891377710 hasConcept C154945302 @default.
- W2891377710 hasConcept C17744445 @default.
- W2891377710 hasConcept C195910791 @default.
- W2891377710 hasConcept C199539241 @default.
- W2891377710 hasConcept C23123220 @default.
- W2891377710 hasConcept C2522767166 @default.
- W2891377710 hasConcept C2779134260 @default.
- W2891377710 hasConcept C2779231881 @default.
- W2891377710 hasConcept C2779473830 @default.
- W2891377710 hasConcept C2779701055 @default.
- W2891377710 hasConcept C3018060332 @default.
- W2891377710 hasConcept C41008148 @default.
- W2891377710 hasConcept C534262118 @default.
- W2891377710 hasConcept C71924100 @default.
- W2891377710 hasConceptScore W2891377710C108827166 @default.
- W2891377710 hasConceptScore W2891377710C124101348 @default.
- W2891377710 hasConceptScore W2891377710C141071460 @default.
- W2891377710 hasConceptScore W2891377710C142724271 @default.
- W2891377710 hasConceptScore W2891377710C153083717 @default.
- W2891377710 hasConceptScore W2891377710C154945302 @default.
- W2891377710 hasConceptScore W2891377710C17744445 @default.
- W2891377710 hasConceptScore W2891377710C195910791 @default.
- W2891377710 hasConceptScore W2891377710C199539241 @default.
- W2891377710 hasConceptScore W2891377710C23123220 @default.
- W2891377710 hasConceptScore W2891377710C2522767166 @default.
- W2891377710 hasConceptScore W2891377710C2779134260 @default.
- W2891377710 hasConceptScore W2891377710C2779231881 @default.
- W2891377710 hasConceptScore W2891377710C2779473830 @default.
- W2891377710 hasConceptScore W2891377710C2779701055 @default.
- W2891377710 hasConceptScore W2891377710C3018060332 @default.
- W2891377710 hasConceptScore W2891377710C41008148 @default.
- W2891377710 hasConceptScore W2891377710C534262118 @default.
- W2891377710 hasConceptScore W2891377710C71924100 @default.