Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891388911> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2891388911 endingPage "86" @default.
- W2891388911 startingPage "80" @default.
- W2891388911 abstract "Recently, SDN has emerged as a promising technology to cost-effectively provide the scale and flexibility necessary for IoT services. In this article, we consider the wireless SDN for IoT, referred to as SDN-IoT, which is anticipated to smartly route traffic and use underutilized network resources to deliver IoT data to the cloud/ Internet. However, the rapid increase of IoT devices and the subsequent massive surge of the IoT data traffic are expected to place a huge strain on the SDN-IoT. In this article, we focus on this issue and point out the importance of assigning suitable channels to each SDN-IoT switch to avoid potential network congestion. In particular, we consider how to exploit POC assignment in the SDN-IoT. However, our investigation reveals that the conventional fixed POC assignment algorithms are not viable for the highly dynamic large-scale SDN-IoT. Therefore, in this article, we propose a novel deep-learning-based intelligent POC assignment for the wireless SDN-IoT where the IoT data traffic dynamically changes. In particular, we envision two deep-learning-based strategies to predict the future IoT traffic load and to adaptively assign POCs according to predicted traffic load, respectively. Computer-based simulation results demonstrate that with the envisioned deep learning methods carried out at the SDN-IoT controller, our proposal achieves high accuracy of traffic load prediction and quick convergence of the channel assignment process. Additionally, in contrast with the conventional POC assignment algorithms, our proposal significantly improves the network performance." @default.
- W2891388911 created "2018-09-27" @default.
- W2891388911 creator A5007662359 @default.
- W2891388911 creator A5013311265 @default.
- W2891388911 creator A5015739734 @default.
- W2891388911 creator A5063911030 @default.
- W2891388911 date "2018-09-01" @default.
- W2891388911 modified "2023-10-16" @default.
- W2891388911 title "On a Novel Deep-Learning-Based Intelligent Partially Overlapping Channel Assignment in SDN-IoT" @default.
- W2891388911 cites W2041996794 @default.
- W2891388911 cites W2100495367 @default.
- W2891388911 cites W2104830451 @default.
- W2891388911 cites W2115377324 @default.
- W2891388911 cites W2115579058 @default.
- W2891388911 cites W2152421030 @default.
- W2891388911 cites W2398703788 @default.
- W2891388911 cites W2566425973 @default.
- W2891388911 cites W2606358632 @default.
- W2891388911 cites W2607352806 @default.
- W2891388911 cites W2617931713 @default.
- W2891388911 cites W2620303912 @default.
- W2891388911 cites W2751567280 @default.
- W2891388911 cites W2767151733 @default.
- W2891388911 cites W2890627666 @default.
- W2891388911 doi "https://doi.org/10.1109/mcom.2018.1701227" @default.
- W2891388911 hasPublicationYear "2018" @default.
- W2891388911 type Work @default.
- W2891388911 sameAs 2891388911 @default.
- W2891388911 citedByCount "94" @default.
- W2891388911 countsByYear W28913889112018 @default.
- W2891388911 countsByYear W28913889112019 @default.
- W2891388911 countsByYear W28913889112020 @default.
- W2891388911 countsByYear W28913889112021 @default.
- W2891388911 countsByYear W28913889112022 @default.
- W2891388911 countsByYear W28913889112023 @default.
- W2891388911 crossrefType "journal-article" @default.
- W2891388911 hasAuthorship W2891388911A5007662359 @default.
- W2891388911 hasAuthorship W2891388911A5013311265 @default.
- W2891388911 hasAuthorship W2891388911A5015739734 @default.
- W2891388911 hasAuthorship W2891388911A5063911030 @default.
- W2891388911 hasConcept C108583219 @default.
- W2891388911 hasConcept C127162648 @default.
- W2891388911 hasConcept C154945302 @default.
- W2891388911 hasConcept C31258907 @default.
- W2891388911 hasConcept C38652104 @default.
- W2891388911 hasConcept C41008148 @default.
- W2891388911 hasConcept C81860439 @default.
- W2891388911 hasConceptScore W2891388911C108583219 @default.
- W2891388911 hasConceptScore W2891388911C127162648 @default.
- W2891388911 hasConceptScore W2891388911C154945302 @default.
- W2891388911 hasConceptScore W2891388911C31258907 @default.
- W2891388911 hasConceptScore W2891388911C38652104 @default.
- W2891388911 hasConceptScore W2891388911C41008148 @default.
- W2891388911 hasConceptScore W2891388911C81860439 @default.
- W2891388911 hasIssue "9" @default.
- W2891388911 hasLocation W28913889111 @default.
- W2891388911 hasOpenAccess W2891388911 @default.
- W2891388911 hasPrimaryLocation W28913889111 @default.
- W2891388911 hasRelatedWork W2126887587 @default.
- W2891388911 hasRelatedWork W2130966263 @default.
- W2891388911 hasRelatedWork W2731899572 @default.
- W2891388911 hasRelatedWork W2751166006 @default.
- W2891388911 hasRelatedWork W2939353110 @default.
- W2891388911 hasRelatedWork W3009238340 @default.
- W2891388911 hasRelatedWork W3215138031 @default.
- W2891388911 hasRelatedWork W4321369474 @default.
- W2891388911 hasRelatedWork W4327774331 @default.
- W2891388911 hasRelatedWork W4360585206 @default.
- W2891388911 hasVolume "56" @default.
- W2891388911 isParatext "false" @default.
- W2891388911 isRetracted "false" @default.
- W2891388911 magId "2891388911" @default.
- W2891388911 workType "article" @default.