Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891389166> ?p ?o ?g. }
- W2891389166 endingPage "408" @default.
- W2891389166 startingPage "395" @default.
- W2891389166 abstract "Remote sensing technology has been proved useful in mapping grassland vegetation properties. Spectral features of vegetation cover can be recorded by optical sensors on board of different platforms. With increasing popularity of applying unmanned aerial vehicle (UAV) to mapping plant cover, the study aims to investigate the possible applications and potential issues related to mapping leaf area index (LAI) through integration of remote sensing imagery collected by multiple sensors. This paper applied the collected spectral data through field-based (FLD) and UAV-borne spectroradiometer to map LAI in a Sino–German experiment pasture located in the Xilingol grassland, Inner Mongolia, China. Spectroradiometers on FLD and UAV platforms were taken to measure spectral reflectance related to the targeted vegetation properties. Based on eight vegetation indices (VIs) computed from the collected hyperspectral data, regression models were used to inverse LAI. The spectral responses between FLD and UAV platforms were compared, and the regression models relating LAI with VIs from FLD and UAV were established. The modeled LAIs by UAV and FLD platforms were analyzed in order to evaluate the feasibility of potential integration of spectra data for mapping vegetation from the two platforms. Results indicated that the spectral reflectance between FLD and UAV showed critical gaps in the green and near-infrared regions of the spectrum over densely vegetated areas, while the gaps were small over sparsely vegetated areas. The VI values from FLD spectra were greater than their UAV-based counterparts. Out of all the VIs, broadband generalized soil-adjusted vegetation index (GESAVI) and narrow-band nNDVI2 were found to achieve the best results in terms of the accuracy of the inversed LAIs for both FLD and UAV platforms. We conclude that GESAVI and nNDVI2 are the two promising VIs for both platforms and thus preferred for LAI inversion to carry spectra integration of the two platforms. We suggest that accuracy on the LAI inversion could be improved by applying more advanced functions (e.g. non-linear) considering the observed bias for the difference between the UAV- and FLD-inversed LAIs, especially when LAI was low." @default.
- W2891389166 created "2018-09-27" @default.
- W2891389166 creator A5020692104 @default.
- W2891389166 creator A5020880531 @default.
- W2891389166 creator A5035854233 @default.
- W2891389166 creator A5058217517 @default.
- W2891389166 creator A5067581449 @default.
- W2891389166 creator A5071203879 @default.
- W2891389166 creator A5087191897 @default.
- W2891389166 date "2018-09-15" @default.
- W2891389166 modified "2023-10-01" @default.
- W2891389166 title "Comparison of leaf area index inversion for grassland vegetation through remotely sensed spectra by unmanned aerial vehicle and field-based spectroradiometer" @default.
- W2891389166 cites W1964219559 @default.
- W2891389166 cites W1965633708 @default.
- W2891389166 cites W1966527728 @default.
- W2891389166 cites W1967395374 @default.
- W2891389166 cites W1981099199 @default.
- W2891389166 cites W1983377997 @default.
- W2891389166 cites W1998943389 @default.
- W2891389166 cites W2000613913 @default.
- W2891389166 cites W2005156666 @default.
- W2891389166 cites W2007759082 @default.
- W2891389166 cites W2009382268 @default.
- W2891389166 cites W2011010318 @default.
- W2891389166 cites W2030233869 @default.
- W2891389166 cites W2036003376 @default.
- W2891389166 cites W2038983886 @default.
- W2891389166 cites W2063623478 @default.
- W2891389166 cites W2068554761 @default.
- W2891389166 cites W2071454092 @default.
- W2891389166 cites W2076510829 @default.
- W2891389166 cites W2080116978 @default.
- W2891389166 cites W2082641174 @default.
- W2891389166 cites W2083300790 @default.
- W2891389166 cites W2115713950 @default.
- W2891389166 cites W2118178527 @default.
- W2891389166 cites W2122348296 @default.
- W2891389166 cites W2145982493 @default.
- W2891389166 cites W2151569550 @default.
- W2891389166 cites W2166575628 @default.
- W2891389166 cites W2266932692 @default.
- W2891389166 cites W2472272006 @default.
- W2891389166 cites W2527519068 @default.
- W2891389166 cites W2547654224 @default.
- W2891389166 cites W2551562355 @default.
- W2891389166 cites W2600798029 @default.
- W2891389166 cites W2603798200 @default.
- W2891389166 cites W2609946914 @default.
- W2891389166 cites W2612981598 @default.
- W2891389166 cites W2621384129 @default.
- W2891389166 cites W2626521779 @default.
- W2891389166 cites W2698520966 @default.
- W2891389166 cites W2726912859 @default.
- W2891389166 cites W2730843485 @default.
- W2891389166 cites W2765127940 @default.
- W2891389166 cites W2773589087 @default.
- W2891389166 doi "https://doi.org/10.1093/jpe/rty036" @default.
- W2891389166 hasPublicationYear "2018" @default.
- W2891389166 type Work @default.
- W2891389166 sameAs 2891389166 @default.
- W2891389166 citedByCount "11" @default.
- W2891389166 countsByYear W28913891662019 @default.
- W2891389166 countsByYear W28913891662020 @default.
- W2891389166 countsByYear W28913891662021 @default.
- W2891389166 countsByYear W28913891662022 @default.
- W2891389166 countsByYear W28913891662023 @default.
- W2891389166 crossrefType "journal-article" @default.
- W2891389166 hasAuthorship W2891389166A5020692104 @default.
- W2891389166 hasAuthorship W2891389166A5020880531 @default.
- W2891389166 hasAuthorship W2891389166A5035854233 @default.
- W2891389166 hasAuthorship W2891389166A5058217517 @default.
- W2891389166 hasAuthorship W2891389166A5067581449 @default.
- W2891389166 hasAuthorship W2891389166A5071203879 @default.
- W2891389166 hasAuthorship W2891389166A5087191897 @default.
- W2891389166 hasBestOaLocation W28913891661 @default.
- W2891389166 hasConcept C108597893 @default.
- W2891389166 hasConcept C114700698 @default.
- W2891389166 hasConcept C120665830 @default.
- W2891389166 hasConcept C121332964 @default.
- W2891389166 hasConcept C130066347 @default.
- W2891389166 hasConcept C142724271 @default.
- W2891389166 hasConcept C159078339 @default.
- W2891389166 hasConcept C176641082 @default.
- W2891389166 hasConcept C18903297 @default.
- W2891389166 hasConcept C205649164 @default.
- W2891389166 hasConcept C25989453 @default.
- W2891389166 hasConcept C2775835988 @default.
- W2891389166 hasConcept C2776133958 @default.
- W2891389166 hasConcept C39432304 @default.
- W2891389166 hasConcept C62649853 @default.
- W2891389166 hasConcept C71924100 @default.
- W2891389166 hasConcept C86803240 @default.
- W2891389166 hasConceptScore W2891389166C108597893 @default.
- W2891389166 hasConceptScore W2891389166C114700698 @default.
- W2891389166 hasConceptScore W2891389166C120665830 @default.
- W2891389166 hasConceptScore W2891389166C121332964 @default.
- W2891389166 hasConceptScore W2891389166C130066347 @default.
- W2891389166 hasConceptScore W2891389166C142724271 @default.