Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891411100> ?p ?o ?g. }
- W2891411100 endingPage "15" @default.
- W2891411100 startingPage "1" @default.
- W2891411100 abstract "Accidental fall detection for the elderly who live alone can minimize the risk of death and injuries. In this article, we present a new fall detection method based on deep learning and image, where a human body recognition model-DeeperCut is used. First, a camera is used to get the detection source data, and then the video is split into images which can be input into DeeperCut model. The human key point data in the output map and the label of the pictures are used as training data to input into the fall detection neural network. The output model then judges the fall of the subsequent pictures. In addition, the fall detection system is designed and implemented with using Raspberry Pi hardware in a local network environment. The presented method obtains a 100% fall detection rate in the experimental environment. The false positive rate on the test set is around 1.95% which is very low and can be ignored because this will be checked by using SMS, WeChat and other SNS tools to confirm falls. Experimental results show that the proposed fall behavior recognition is effective and feasible to be deployed in home environment." @default.
- W2891411100 created "2018-09-27" @default.
- W2891411100 creator A5019497769 @default.
- W2891411100 creator A5020273415 @default.
- W2891411100 creator A5050199464 @default.
- W2891411100 creator A5071713949 @default.
- W2891411100 date "2018-10-01" @default.
- W2891411100 modified "2023-09-24" @default.
- W2891411100 title "Fall Behavior Recognition Based on Deep Learning and Image Processing" @default.
- W2891411100 cites W1130866357 @default.
- W2891411100 cites W135604948 @default.
- W2891411100 cites W1928419358 @default.
- W2891411100 cites W1998970979 @default.
- W2891411100 cites W2010545956 @default.
- W2891411100 cites W2030972883 @default.
- W2891411100 cites W2043495858 @default.
- W2891411100 cites W2050613080 @default.
- W2891411100 cites W2059810738 @default.
- W2891411100 cites W2076234758 @default.
- W2891411100 cites W2101161342 @default.
- W2891411100 cites W2102699948 @default.
- W2891411100 cites W2105948402 @default.
- W2891411100 cites W2111619626 @default.
- W2891411100 cites W2155326828 @default.
- W2891411100 cites W2169138660 @default.
- W2891411100 cites W2170672895 @default.
- W2891411100 cites W2246021102 @default.
- W2891411100 cites W2285285725 @default.
- W2891411100 cites W2293944788 @default.
- W2891411100 cites W2319308093 @default.
- W2891411100 cites W2321930382 @default.
- W2891411100 cites W2347706261 @default.
- W2891411100 cites W2382036597 @default.
- W2891411100 cites W2557643488 @default.
- W2891411100 cites W2567192625 @default.
- W2891411100 cites W2588147029 @default.
- W2891411100 cites W2593073928 @default.
- W2891411100 cites W2613208823 @default.
- W2891411100 cites W2743901700 @default.
- W2891411100 cites W2745128635 @default.
- W2891411100 cites W2751158764 @default.
- W2891411100 cites W2763603120 @default.
- W2891411100 cites W2781057795 @default.
- W2891411100 cites W2782614863 @default.
- W2891411100 cites W2802740170 @default.
- W2891411100 cites W2805847580 @default.
- W2891411100 cites W4233475647 @default.
- W2891411100 cites W4238320986 @default.
- W2891411100 cites W4239218751 @default.
- W2891411100 doi "https://doi.org/10.4018/ijmcmc.2018100101" @default.
- W2891411100 hasPublicationYear "2018" @default.
- W2891411100 type Work @default.
- W2891411100 sameAs 2891411100 @default.
- W2891411100 citedByCount "5" @default.
- W2891411100 countsByYear W28914111002018 @default.
- W2891411100 countsByYear W28914111002021 @default.
- W2891411100 countsByYear W28914111002022 @default.
- W2891411100 crossrefType "journal-article" @default.
- W2891411100 hasAuthorship W2891411100A5019497769 @default.
- W2891411100 hasAuthorship W2891411100A5020273415 @default.
- W2891411100 hasAuthorship W2891411100A5050199464 @default.
- W2891411100 hasAuthorship W2891411100A5071713949 @default.
- W2891411100 hasConcept C108583219 @default.
- W2891411100 hasConcept C115961682 @default.
- W2891411100 hasConcept C141071460 @default.
- W2891411100 hasConcept C154945302 @default.
- W2891411100 hasConcept C169903167 @default.
- W2891411100 hasConcept C177264268 @default.
- W2891411100 hasConcept C199360897 @default.
- W2891411100 hasConcept C26517878 @default.
- W2891411100 hasConcept C2909930183 @default.
- W2891411100 hasConcept C2985745059 @default.
- W2891411100 hasConcept C31972630 @default.
- W2891411100 hasConcept C38652104 @default.
- W2891411100 hasConcept C41008148 @default.
- W2891411100 hasConcept C50644808 @default.
- W2891411100 hasConcept C58489278 @default.
- W2891411100 hasConcept C71924100 @default.
- W2891411100 hasConcept C81860439 @default.
- W2891411100 hasConceptScore W2891411100C108583219 @default.
- W2891411100 hasConceptScore W2891411100C115961682 @default.
- W2891411100 hasConceptScore W2891411100C141071460 @default.
- W2891411100 hasConceptScore W2891411100C154945302 @default.
- W2891411100 hasConceptScore W2891411100C169903167 @default.
- W2891411100 hasConceptScore W2891411100C177264268 @default.
- W2891411100 hasConceptScore W2891411100C199360897 @default.
- W2891411100 hasConceptScore W2891411100C26517878 @default.
- W2891411100 hasConceptScore W2891411100C2909930183 @default.
- W2891411100 hasConceptScore W2891411100C2985745059 @default.
- W2891411100 hasConceptScore W2891411100C31972630 @default.
- W2891411100 hasConceptScore W2891411100C38652104 @default.
- W2891411100 hasConceptScore W2891411100C41008148 @default.
- W2891411100 hasConceptScore W2891411100C50644808 @default.
- W2891411100 hasConceptScore W2891411100C58489278 @default.
- W2891411100 hasConceptScore W2891411100C71924100 @default.
- W2891411100 hasConceptScore W2891411100C81860439 @default.
- W2891411100 hasIssue "4" @default.
- W2891411100 hasLocation W28914111001 @default.