Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891411202> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2891411202 abstract "We study the double Grothendieck polynomials of Kirillov--Naruse for the symplectic and odd orthogonal Grassmannians. These functions are explicitly written as sums of Pfaffian and are identified with the stable limits of the fundamental classes of Schubert varieties in the torus equivariant connective K-theory of these isotropic Grassmannians. We also provide a combinatorial description of the ring formally spanned by double Grothendieck polynomials." @default.
- W2891411202 created "2018-09-27" @default.
- W2891411202 creator A5080400202 @default.
- W2891411202 creator A5083895442 @default.
- W2891411202 creator A5086865425 @default.
- W2891411202 creator A5087158518 @default.
- W2891411202 date "2018-09-21" @default.
- W2891411202 modified "2023-09-27" @default.
- W2891411202 title "Double Grothendieck Polynomials for Symplectic and Odd Orthogonal Grassmannians" @default.
- W2891411202 hasPublicationYear "2018" @default.
- W2891411202 type Work @default.
- W2891411202 sameAs 2891411202 @default.
- W2891411202 citedByCount "0" @default.
- W2891411202 crossrefType "posted-content" @default.
- W2891411202 hasAuthorship W2891411202A5080400202 @default.
- W2891411202 hasAuthorship W2891411202A5083895442 @default.
- W2891411202 hasAuthorship W2891411202A5086865425 @default.
- W2891411202 hasAuthorship W2891411202A5087158518 @default.
- W2891411202 hasConcept C136119220 @default.
- W2891411202 hasConcept C162929932 @default.
- W2891411202 hasConcept C168619227 @default.
- W2891411202 hasConcept C171036898 @default.
- W2891411202 hasConcept C202444582 @default.
- W2891411202 hasConcept C2524010 @default.
- W2891411202 hasConcept C2775956649 @default.
- W2891411202 hasConcept C33923547 @default.
- W2891411202 hasConcept C9767117 @default.
- W2891411202 hasConceptScore W2891411202C136119220 @default.
- W2891411202 hasConceptScore W2891411202C162929932 @default.
- W2891411202 hasConceptScore W2891411202C168619227 @default.
- W2891411202 hasConceptScore W2891411202C171036898 @default.
- W2891411202 hasConceptScore W2891411202C202444582 @default.
- W2891411202 hasConceptScore W2891411202C2524010 @default.
- W2891411202 hasConceptScore W2891411202C2775956649 @default.
- W2891411202 hasConceptScore W2891411202C33923547 @default.
- W2891411202 hasConceptScore W2891411202C9767117 @default.
- W2891411202 hasLocation W28914112021 @default.
- W2891411202 hasOpenAccess W2891411202 @default.
- W2891411202 hasPrimaryLocation W28914112021 @default.
- W2891411202 hasRelatedWork W1494095741 @default.
- W2891411202 hasRelatedWork W1811476718 @default.
- W2891411202 hasRelatedWork W1949010488 @default.
- W2891411202 hasRelatedWork W1965810222 @default.
- W2891411202 hasRelatedWork W1965921806 @default.
- W2891411202 hasRelatedWork W2044671599 @default.
- W2891411202 hasRelatedWork W2107600182 @default.
- W2891411202 hasRelatedWork W2280980681 @default.
- W2891411202 hasRelatedWork W24317719 @default.
- W2891411202 hasRelatedWork W2901913779 @default.
- W2891411202 hasRelatedWork W2947055468 @default.
- W2891411202 hasRelatedWork W2948327514 @default.
- W2891411202 hasRelatedWork W2950787672 @default.
- W2891411202 hasRelatedWork W2952016293 @default.
- W2891411202 hasRelatedWork W2952665982 @default.
- W2891411202 hasRelatedWork W2962870433 @default.
- W2891411202 hasRelatedWork W2962931574 @default.
- W2891411202 hasRelatedWork W2963922441 @default.
- W2891411202 hasRelatedWork W2964050811 @default.
- W2891411202 hasRelatedWork W2989624647 @default.
- W2891411202 isParatext "false" @default.
- W2891411202 isRetracted "false" @default.
- W2891411202 magId "2891411202" @default.
- W2891411202 workType "article" @default.