Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891418244> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2891418244 abstract "It has been observed by Maldacena that one can extract asymptotically anti-de Sitter Einstein $4$-metrics from Bach-flat spacetimes by imposing simple principles and data choices. We cast this problem in a conformally compact Riemannian setting. Following an approach pioneered by Fefferman and Graham for the Einstein equation, we find formal power series for conformally compactifiable, asymptotically hyperbolic Bach-flat 4-metrics expanded about conformal infinity. We also consider Bach-flat metrics in the special case of constant scalar curvature and in the special case of constant $Q$-curvature. This allows us to determine the free data at conformal infinity, and to select those choices that lead to Einstein metrics. Interestingly, the mass is part of that free data, in contrast to the pure Einstein case. We then choose a convenient generalization of the Bach tensor to (bulk) dimensions $n>4$ and consider the higher dimensional problem. We find that the free data for the expansions split into low-order and high-order pairs. The former pair consists of the metric on the conformal boundary and its first radial derivative, while the latter pair consists of the radial derivatives of order $n-2$ and $n-1$. Higher dimensional generalizations of the Bach tensor lack some of the geometrical meaning of the 4-dimensional case. This is reflected in the relative complexity of the higher dimensional problem, but we are able to obtain a relatively complete result if conformal infinity is not scalar flat." @default.
- W2891418244 created "2018-09-27" @default.
- W2891418244 creator A5001102641 @default.
- W2891418244 creator A5045932359 @default.
- W2891418244 date "2018-09-17" @default.
- W2891418244 modified "2023-09-23" @default.
- W2891418244 title "Formal power series for asymptotically hyperbolic Bach-flat metrics" @default.
- W2891418244 cites W1496336285 @default.
- W2891418244 cites W1498090724 @default.
- W2891418244 cites W1883172674 @default.
- W2891418244 cites W1968413948 @default.
- W2891418244 cites W2018844714 @default.
- W2891418244 cites W2045049144 @default.
- W2891418244 cites W2069111311 @default.
- W2891418244 cites W2134678152 @default.
- W2891418244 cites W2146203925 @default.
- W2891418244 cites W2157606627 @default.
- W2891418244 cites W2409691394 @default.
- W2891418244 cites W2497681861 @default.
- W2891418244 cites W2516954381 @default.
- W2891418244 cites W275632955 @default.
- W2891418244 cites W2963453620 @default.
- W2891418244 cites W2963473233 @default.
- W2891418244 cites W2963641365 @default.
- W2891418244 cites W3011890339 @default.
- W2891418244 cites W3098481079 @default.
- W2891418244 cites W3124247482 @default.
- W2891418244 hasPublicationYear "2018" @default.
- W2891418244 type Work @default.
- W2891418244 sameAs 2891418244 @default.
- W2891418244 citedByCount "1" @default.
- W2891418244 countsByYear W28914182442019 @default.
- W2891418244 crossrefType "posted-content" @default.
- W2891418244 hasAuthorship W2891418244A5001102641 @default.
- W2891418244 hasAuthorship W2891418244A5045932359 @default.
- W2891418244 hasConcept C121332964 @default.
- W2891418244 hasConcept C12520029 @default.
- W2891418244 hasConcept C134306372 @default.
- W2891418244 hasConcept C146846114 @default.
- W2891418244 hasConcept C166861157 @default.
- W2891418244 hasConcept C195065555 @default.
- W2891418244 hasConcept C2524010 @default.
- W2891418244 hasConcept C33923547 @default.
- W2891418244 hasConcept C37914503 @default.
- W2891418244 hasConcept C57691317 @default.
- W2891418244 hasConcept C62354387 @default.
- W2891418244 hasConcept C98214594 @default.
- W2891418244 hasConceptScore W2891418244C121332964 @default.
- W2891418244 hasConceptScore W2891418244C12520029 @default.
- W2891418244 hasConceptScore W2891418244C134306372 @default.
- W2891418244 hasConceptScore W2891418244C146846114 @default.
- W2891418244 hasConceptScore W2891418244C166861157 @default.
- W2891418244 hasConceptScore W2891418244C195065555 @default.
- W2891418244 hasConceptScore W2891418244C2524010 @default.
- W2891418244 hasConceptScore W2891418244C33923547 @default.
- W2891418244 hasConceptScore W2891418244C37914503 @default.
- W2891418244 hasConceptScore W2891418244C57691317 @default.
- W2891418244 hasConceptScore W2891418244C62354387 @default.
- W2891418244 hasConceptScore W2891418244C98214594 @default.
- W2891418244 hasOpenAccess W2891418244 @default.
- W2891418244 hasRelatedWork W1767533639 @default.
- W2891418244 hasRelatedWork W1923289538 @default.
- W2891418244 hasRelatedWork W2059523734 @default.
- W2891418244 hasRelatedWork W2080018674 @default.
- W2891418244 hasRelatedWork W2093715349 @default.
- W2891418244 hasRelatedWork W2095211334 @default.
- W2891418244 hasRelatedWork W2740448611 @default.
- W2891418244 hasRelatedWork W2949486124 @default.
- W2891418244 hasRelatedWork W2950575172 @default.
- W2891418244 hasRelatedWork W2951165155 @default.
- W2891418244 hasRelatedWork W2952331532 @default.
- W2891418244 hasRelatedWork W2952499989 @default.
- W2891418244 hasRelatedWork W2963274592 @default.
- W2891418244 hasRelatedWork W2996831260 @default.
- W2891418244 hasRelatedWork W3093024172 @default.
- W2891418244 hasRelatedWork W3099890951 @default.
- W2891418244 hasRelatedWork W3186263634 @default.
- W2891418244 hasRelatedWork W3195694790 @default.
- W2891418244 hasRelatedWork W56522157 @default.
- W2891418244 hasRelatedWork W994336651 @default.
- W2891418244 isParatext "false" @default.
- W2891418244 isRetracted "false" @default.
- W2891418244 magId "2891418244" @default.
- W2891418244 workType "article" @default.