Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891426404> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2891426404 endingPage "378" @default.
- W2891426404 startingPage "361" @default.
- W2891426404 abstract "This paper compares Fuzzy Inference System (FIS), Support Vector Machine (SVM) and MultiLayer Feed-forward neural network (MLF) in modeling a driver’s decision when making discretionary lane changing move on freeways. The FIS model has been developed and published in an earlier work by the authors, whereas the SVM and MLF models are newly developed in this research. The FIS, SVM and MLF models use the same four inputs: the gap between the subject vehicle and the leading vehicle in the original lane, the gap between the subject vehicle and the leading vehicle in the destination lane, the gap between the subject vehicle and the trailing vehicle in the destination lane, and the distance between the preceding and trailing vehicles in the destination lane. The models give a binary decision of “no, stay in the same lane” or “yes, move to the destination lane now”. These models were trained and then tested with the Next Generation SIMulation (NGSIM) vehicle trajectory data. The results have shown that the FIS has the highest accuracies in making correct lane changing decisions. It recommends “yes, move to the destination lane now” with 82.2% accuracy, and “no, stay in the same lane” with 99.5% accuracy. The SVM model also outperformed the traditional gap acceptance model which was used as the benchmark. However, the MLF model was not as accurate as the gap acceptance model." @default.
- W2891426404 created "2018-09-27" @default.
- W2891426404 creator A5060025438 @default.
- W2891426404 creator A5065884672 @default.
- W2891426404 date "2018-08-30" @default.
- W2891426404 modified "2023-09-23" @default.
- W2891426404 title "Comparative Evaluation of Fuzzy Inference System, Support Vector Machine and Multilayer Feed-Forward Neural Network in Making Lane Changing Decisions" @default.
- W2891426404 hasPublicationYear "2018" @default.
- W2891426404 type Work @default.
- W2891426404 sameAs 2891426404 @default.
- W2891426404 citedByCount "0" @default.
- W2891426404 crossrefType "journal-article" @default.
- W2891426404 hasAuthorship W2891426404A5060025438 @default.
- W2891426404 hasAuthorship W2891426404A5065884672 @default.
- W2891426404 hasConcept C119857082 @default.
- W2891426404 hasConcept C12267149 @default.
- W2891426404 hasConcept C13280743 @default.
- W2891426404 hasConcept C154945302 @default.
- W2891426404 hasConcept C185798385 @default.
- W2891426404 hasConcept C186108316 @default.
- W2891426404 hasConcept C195975749 @default.
- W2891426404 hasConcept C205649164 @default.
- W2891426404 hasConcept C2776214188 @default.
- W2891426404 hasConcept C41008148 @default.
- W2891426404 hasConcept C44154836 @default.
- W2891426404 hasConcept C50644808 @default.
- W2891426404 hasConcept C58166 @default.
- W2891426404 hasConceptScore W2891426404C119857082 @default.
- W2891426404 hasConceptScore W2891426404C12267149 @default.
- W2891426404 hasConceptScore W2891426404C13280743 @default.
- W2891426404 hasConceptScore W2891426404C154945302 @default.
- W2891426404 hasConceptScore W2891426404C185798385 @default.
- W2891426404 hasConceptScore W2891426404C186108316 @default.
- W2891426404 hasConceptScore W2891426404C195975749 @default.
- W2891426404 hasConceptScore W2891426404C205649164 @default.
- W2891426404 hasConceptScore W2891426404C2776214188 @default.
- W2891426404 hasConceptScore W2891426404C41008148 @default.
- W2891426404 hasConceptScore W2891426404C44154836 @default.
- W2891426404 hasConceptScore W2891426404C50644808 @default.
- W2891426404 hasConceptScore W2891426404C58166 @default.
- W2891426404 hasIssue "4" @default.
- W2891426404 hasLocation W28914264041 @default.
- W2891426404 hasOpenAccess W2891426404 @default.
- W2891426404 hasPrimaryLocation W28914264041 @default.
- W2891426404 hasRelatedWork W1967674551 @default.
- W2891426404 hasRelatedWork W1979804534 @default.
- W2891426404 hasRelatedWork W2030713743 @default.
- W2891426404 hasRelatedWork W2126381398 @default.
- W2891426404 hasRelatedWork W2272117048 @default.
- W2891426404 hasRelatedWork W2312739697 @default.
- W2891426404 hasRelatedWork W2329629915 @default.
- W2891426404 hasRelatedWork W2348196687 @default.
- W2891426404 hasRelatedWork W2361787722 @default.
- W2891426404 hasRelatedWork W2379805606 @default.
- W2891426404 hasRelatedWork W2388330462 @default.
- W2891426404 hasRelatedWork W2771938872 @default.
- W2891426404 hasRelatedWork W2776402981 @default.
- W2891426404 hasRelatedWork W2854199582 @default.
- W2891426404 hasRelatedWork W2907138842 @default.
- W2891426404 hasRelatedWork W2938312712 @default.
- W2891426404 hasRelatedWork W2969191978 @default.
- W2891426404 hasRelatedWork W3104214124 @default.
- W2891426404 hasRelatedWork W3120649473 @default.
- W2891426404 hasRelatedWork W2107897921 @default.
- W2891426404 hasVolume "28" @default.
- W2891426404 isParatext "false" @default.
- W2891426404 isRetracted "false" @default.
- W2891426404 magId "2891426404" @default.
- W2891426404 workType "article" @default.