Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891428319> ?p ?o ?g. }
- W2891428319 endingPage "146" @default.
- W2891428319 startingPage "131" @default.
- W2891428319 abstract "Industrial bioprocesses development nowadays is concerned with producing chemicals using yeast, bacteria and therapeutic proteins in mammalian cells. This involves the utilization of microorganism cells as factories and re-engineering them in silico. The tools that could facilitate this process are known as the kinetic models. Kinetic models of cellular metabolism are important in assisting researchers to understand the rational design of biological systems, predicting metabolites production, and improving bio-products development. However, the most challenging task in model development is parameter estimation, which is the process of identifying an unknown value of model parameters which provides the best fit between the model output and a set of experimental data. Due to the increased complexity and high dimensionality of the models, which are extremely nonlinear and contain large numbers of kinetic parameters, parameter estimation is known to be difficult and time-consuming. This study proposes a cooperative enhanced scatter search with opposition-based learning schemes (CeSSOL) for parameter estimation in large-scale biology models. The method was executed in parallel with the proposed cooperative mechanism in order to exchange information (kinetic parameters) between individual threads. Each thread consists of different parameters settings that enhance the systemic properties in obtaining the global minimum. The performance of the proposed method was assessed against two large-scale microorganisms models using mammalian and bacteria cells. The results revealed that the proposed method recorded faster computation time compared to other methods. The study has also demonstrated that the proposed method can be used to provide more accurate and faster estimation of kinetic models, indicating the potential benefits of utilizing this method for expert systems of industrial biotechnology." @default.
- W2891428319 created "2018-09-27" @default.
- W2891428319 creator A5005208002 @default.
- W2891428319 creator A5031916282 @default.
- W2891428319 creator A5042987975 @default.
- W2891428319 creator A5052135822 @default.
- W2891428319 creator A5070935465 @default.
- W2891428319 creator A5085034566 @default.
- W2891428319 date "2019-02-01" @default.
- W2891428319 modified "2023-10-01" @default.
- W2891428319 title "Cooperative enhanced scatter search with opposition-based learning schemes for parameter estimation in high dimensional kinetic models of biological systems" @default.
- W2891428319 cites W1513592816 @default.
- W2891428319 cites W1537544745 @default.
- W2891428319 cites W1758405515 @default.
- W2891428319 cites W1925621478 @default.
- W2891428319 cites W1974129636 @default.
- W2891428319 cites W1999291922 @default.
- W2891428319 cites W2004322850 @default.
- W2891428319 cites W2005666336 @default.
- W2891428319 cites W2019133950 @default.
- W2891428319 cites W2023106695 @default.
- W2891428319 cites W2064641484 @default.
- W2891428319 cites W2070389890 @default.
- W2891428319 cites W2073641629 @default.
- W2891428319 cites W2074212800 @default.
- W2891428319 cites W2090517830 @default.
- W2891428319 cites W2092838569 @default.
- W2891428319 cites W2101647774 @default.
- W2891428319 cites W2109571753 @default.
- W2891428319 cites W2111652881 @default.
- W2891428319 cites W2111807512 @default.
- W2891428319 cites W2120159299 @default.
- W2891428319 cites W2131742526 @default.
- W2891428319 cites W2150975723 @default.
- W2891428319 cites W2156995638 @default.
- W2891428319 cites W2157007633 @default.
- W2891428319 cites W2158747645 @default.
- W2891428319 cites W2165603655 @default.
- W2891428319 cites W2168648059 @default.
- W2891428319 cites W2283085179 @default.
- W2891428319 cites W2324487946 @default.
- W2891428319 cites W2461742269 @default.
- W2891428319 cites W2462439856 @default.
- W2891428319 cites W2571863445 @default.
- W2891428319 cites W2575157339 @default.
- W2891428319 cites W2586418782 @default.
- W2891428319 cites W2590822399 @default.
- W2891428319 cites W2606013002 @default.
- W2891428319 cites W2611216337 @default.
- W2891428319 cites W2738905306 @default.
- W2891428319 cites W2747628453 @default.
- W2891428319 cites W836474583 @default.
- W2891428319 doi "https://doi.org/10.1016/j.eswa.2018.09.020" @default.
- W2891428319 hasPublicationYear "2019" @default.
- W2891428319 type Work @default.
- W2891428319 sameAs 2891428319 @default.
- W2891428319 citedByCount "17" @default.
- W2891428319 countsByYear W28914283192019 @default.
- W2891428319 countsByYear W28914283192020 @default.
- W2891428319 countsByYear W28914283192021 @default.
- W2891428319 countsByYear W28914283192022 @default.
- W2891428319 countsByYear W28914283192023 @default.
- W2891428319 crossrefType "journal-article" @default.
- W2891428319 hasAuthorship W2891428319A5005208002 @default.
- W2891428319 hasAuthorship W2891428319A5031916282 @default.
- W2891428319 hasAuthorship W2891428319A5042987975 @default.
- W2891428319 hasAuthorship W2891428319A5052135822 @default.
- W2891428319 hasAuthorship W2891428319A5070935465 @default.
- W2891428319 hasAuthorship W2891428319A5085034566 @default.
- W2891428319 hasConcept C104317684 @default.
- W2891428319 hasConcept C111030470 @default.
- W2891428319 hasConcept C11413529 @default.
- W2891428319 hasConcept C119857082 @default.
- W2891428319 hasConcept C127413603 @default.
- W2891428319 hasConcept C152662350 @default.
- W2891428319 hasConcept C154945302 @default.
- W2891428319 hasConcept C167928553 @default.
- W2891428319 hasConcept C183696295 @default.
- W2891428319 hasConcept C186060115 @default.
- W2891428319 hasConcept C2775905019 @default.
- W2891428319 hasConcept C41008148 @default.
- W2891428319 hasConcept C45374587 @default.
- W2891428319 hasConcept C55493867 @default.
- W2891428319 hasConcept C60644358 @default.
- W2891428319 hasConcept C86803240 @default.
- W2891428319 hasConceptScore W2891428319C104317684 @default.
- W2891428319 hasConceptScore W2891428319C111030470 @default.
- W2891428319 hasConceptScore W2891428319C11413529 @default.
- W2891428319 hasConceptScore W2891428319C119857082 @default.
- W2891428319 hasConceptScore W2891428319C127413603 @default.
- W2891428319 hasConceptScore W2891428319C152662350 @default.
- W2891428319 hasConceptScore W2891428319C154945302 @default.
- W2891428319 hasConceptScore W2891428319C167928553 @default.
- W2891428319 hasConceptScore W2891428319C183696295 @default.
- W2891428319 hasConceptScore W2891428319C186060115 @default.
- W2891428319 hasConceptScore W2891428319C2775905019 @default.
- W2891428319 hasConceptScore W2891428319C41008148 @default.
- W2891428319 hasConceptScore W2891428319C45374587 @default.