Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891432346> ?p ?o ?g. }
- W2891432346 endingPage "269" @default.
- W2891432346 startingPage "258" @default.
- W2891432346 abstract "The concentric configured thermally-coupled double-membrane reactor (TCDMR) was optimised to improve the co-production of hydrogen and methanol. Using a detailed approach, we identified the non-linear differential evolution (DE) algorithm as the most suitable optimisation tool among the most used optimisation algorithms in reactor design (GA, PSO, and DE) due to its ability to converge to the optimal solution with fewer iterations. Considering DE algorithm with the industry benchmark data, we optimised the key operational parameters of TCDMR (as OTCDMR), leading to the improved reactor performance (regarding the overall heat transfer and methanol/hydrogen production) compared to the conventional methanol reactor (CMR) and TCDMR. Simulation results show that the methanol production rate of OTCDMR could reach 315.7 tonnes day−1, representing a 22.6% enhancement than CMR (257 tonnes day−1). For the hydrogen production, OTCDMR is predicted to deliver 19.7 tonnes of hydrogen per day, surpassing the 15.5 tonnes day−1 production rate by TCDMR." @default.
- W2891432346 created "2018-09-27" @default.
- W2891432346 creator A5011747109 @default.
- W2891432346 creator A5051692246 @default.
- W2891432346 creator A5063415111 @default.
- W2891432346 creator A5063556653 @default.
- W2891432346 creator A5080966365 @default.
- W2891432346 creator A5031694049 @default.
- W2891432346 date "2018-11-01" @default.
- W2891432346 modified "2023-09-26" @default.
- W2891432346 title "On improving the hydrogen and methanol production using an auto-thermal double-membrane reactor: Model prediction and optimisation" @default.
- W2891432346 cites W1826421496 @default.
- W2891432346 cites W1947063577 @default.
- W2891432346 cites W1964215250 @default.
- W2891432346 cites W1965766173 @default.
- W2891432346 cites W1977514205 @default.
- W2891432346 cites W1982386643 @default.
- W2891432346 cites W1982439959 @default.
- W2891432346 cites W1983644656 @default.
- W2891432346 cites W1989552515 @default.
- W2891432346 cites W1989923723 @default.
- W2891432346 cites W2000918679 @default.
- W2891432346 cites W2011069066 @default.
- W2891432346 cites W2021621589 @default.
- W2891432346 cites W2030419913 @default.
- W2891432346 cites W2042042522 @default.
- W2891432346 cites W2042176930 @default.
- W2891432346 cites W2044904754 @default.
- W2891432346 cites W2049891095 @default.
- W2891432346 cites W2050723771 @default.
- W2891432346 cites W2052693429 @default.
- W2891432346 cites W2056098885 @default.
- W2891432346 cites W2057319687 @default.
- W2891432346 cites W2060793242 @default.
- W2891432346 cites W2062618602 @default.
- W2891432346 cites W2065675644 @default.
- W2891432346 cites W2065823544 @default.
- W2891432346 cites W2070500177 @default.
- W2891432346 cites W2073844695 @default.
- W2891432346 cites W2076062768 @default.
- W2891432346 cites W2076976793 @default.
- W2891432346 cites W2080503988 @default.
- W2891432346 cites W2087955879 @default.
- W2891432346 cites W2090417219 @default.
- W2891432346 cites W2091455196 @default.
- W2891432346 cites W2106079055 @default.
- W2891432346 cites W2107599704 @default.
- W2891432346 cites W2115418414 @default.
- W2891432346 cites W2117423968 @default.
- W2891432346 cites W2133180244 @default.
- W2891432346 cites W2218567092 @default.
- W2891432346 cites W2261147002 @default.
- W2891432346 cites W2321866900 @default.
- W2891432346 cites W2552624945 @default.
- W2891432346 cites W2779194259 @default.
- W2891432346 cites W4205956952 @default.
- W2891432346 cites W4237612061 @default.
- W2891432346 cites W4248808158 @default.
- W2891432346 cites W918005137 @default.
- W2891432346 doi "https://doi.org/10.1016/j.compchemeng.2018.09.006" @default.
- W2891432346 hasPublicationYear "2018" @default.
- W2891432346 type Work @default.
- W2891432346 sameAs 2891432346 @default.
- W2891432346 citedByCount "9" @default.
- W2891432346 countsByYear W28914323462019 @default.
- W2891432346 countsByYear W28914323462020 @default.
- W2891432346 countsByYear W28914323462021 @default.
- W2891432346 countsByYear W28914323462022 @default.
- W2891432346 countsByYear W28914323462023 @default.
- W2891432346 crossrefType "journal-article" @default.
- W2891432346 hasAuthorship W2891432346A5011747109 @default.
- W2891432346 hasAuthorship W2891432346A5031694049 @default.
- W2891432346 hasAuthorship W2891432346A5051692246 @default.
- W2891432346 hasAuthorship W2891432346A5063415111 @default.
- W2891432346 hasAuthorship W2891432346A5063556653 @default.
- W2891432346 hasAuthorship W2891432346A5080966365 @default.
- W2891432346 hasBestOaLocation W28914323462 @default.
- W2891432346 hasConcept C11413529 @default.
- W2891432346 hasConcept C116915560 @default.
- W2891432346 hasConcept C127413603 @default.
- W2891432346 hasConcept C13280743 @default.
- W2891432346 hasConcept C139719470 @default.
- W2891432346 hasConcept C162324750 @default.
- W2891432346 hasConcept C178790620 @default.
- W2891432346 hasConcept C185592680 @default.
- W2891432346 hasConcept C185798385 @default.
- W2891432346 hasConcept C202189072 @default.
- W2891432346 hasConcept C205649164 @default.
- W2891432346 hasConcept C21880701 @default.
- W2891432346 hasConcept C2778348673 @default.
- W2891432346 hasConcept C2779607525 @default.
- W2891432346 hasConcept C3020597237 @default.
- W2891432346 hasConcept C41008148 @default.
- W2891432346 hasConcept C512968161 @default.
- W2891432346 hasConcept C74750220 @default.
- W2891432346 hasConcept C97488330 @default.
- W2891432346 hasConceptScore W2891432346C11413529 @default.
- W2891432346 hasConceptScore W2891432346C116915560 @default.