Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891432604> ?p ?o ?g. }
- W2891432604 endingPage "307" @default.
- W2891432604 startingPage "297" @default.
- W2891432604 abstract "In this paper, we present a deep convolutional neural network to capture the inherent properties of image degradation, which can handle different kernels and saturated pixels in a unified framework. The proposed neural network is motivated by the low-rank property of pseudo-inverse kernels. We first compute a generalized low-rank approximation for a large number of blur kernels, and then use separable filters to initialize the convolutional parameters in the network. Our analysis shows that the estimated decomposed matrices contain the most essential information of the input kernel, which ensures the proposed network to handle various blurs in a unified framework and generate high-quality deblurring results. Experimental results on benchmark datasets with noise and saturated pixels demonstrate that the proposed algorithm performs favorably against state-of-the-art methods." @default.
- W2891432604 created "2018-09-27" @default.
- W2891432604 creator A5004164569 @default.
- W2891432604 creator A5017116858 @default.
- W2891432604 creator A5018318136 @default.
- W2891432604 creator A5057999649 @default.
- W2891432604 creator A5063179713 @default.
- W2891432604 creator A5068837264 @default.
- W2891432604 creator A5071037763 @default.
- W2891432604 creator A5091543149 @default.
- W2891432604 date "2018-01-01" @default.
- W2891432604 modified "2023-09-24" @default.
- W2891432604 title "Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation" @default.
- W2891432604 cites W1510355813 @default.
- W2891432604 cites W1517525610 @default.
- W2891432604 cites W1973567017 @default.
- W2891432604 cites W1976730913 @default.
- W2891432604 cites W1994321112 @default.
- W2891432604 cites W204742108 @default.
- W2891432604 cites W2098535678 @default.
- W2891432604 cites W2099628070 @default.
- W2891432604 cites W2110158442 @default.
- W2891432604 cites W2121927366 @default.
- W2891432604 cites W2124964692 @default.
- W2891432604 cites W2130184048 @default.
- W2891432604 cites W2134276905 @default.
- W2891432604 cites W2147298660 @default.
- W2891432604 cites W2147401053 @default.
- W2891432604 cites W2154571593 @default.
- W2891432604 cites W2167053624 @default.
- W2891432604 cites W2170608748 @default.
- W2891432604 cites W2172275395 @default.
- W2891432604 cites W22133433 @default.
- W2891432604 cites W2283376475 @default.
- W2891432604 cites W2293078015 @default.
- W2891432604 cites W2396267364 @default.
- W2891432604 cites W2472069500 @default.
- W2891432604 cites W2552111036 @default.
- W2891432604 cites W2611015177 @default.
- W2891432604 cites W2613155248 @default.
- W2891432604 cites W2740543610 @default.
- W2891432604 cites W2741183886 @default.
- W2891432604 cites W2776500869 @default.
- W2891432604 cites W2962754725 @default.
- W2891432604 cites W2964051148 @default.
- W2891432604 cites W3101787898 @default.
- W2891432604 hasPublicationYear "2018" @default.
- W2891432604 type Work @default.
- W2891432604 sameAs 2891432604 @default.
- W2891432604 citedByCount "11" @default.
- W2891432604 countsByYear W28914326042019 @default.
- W2891432604 countsByYear W28914326042020 @default.
- W2891432604 countsByYear W28914326042021 @default.
- W2891432604 crossrefType "proceedings-article" @default.
- W2891432604 hasAuthorship W2891432604A5004164569 @default.
- W2891432604 hasAuthorship W2891432604A5017116858 @default.
- W2891432604 hasAuthorship W2891432604A5018318136 @default.
- W2891432604 hasAuthorship W2891432604A5057999649 @default.
- W2891432604 hasAuthorship W2891432604A5063179713 @default.
- W2891432604 hasAuthorship W2891432604A5068837264 @default.
- W2891432604 hasAuthorship W2891432604A5071037763 @default.
- W2891432604 hasAuthorship W2891432604A5091543149 @default.
- W2891432604 hasConcept C106430172 @default.
- W2891432604 hasConcept C11413529 @default.
- W2891432604 hasConcept C114614502 @default.
- W2891432604 hasConcept C115961682 @default.
- W2891432604 hasConcept C13280743 @default.
- W2891432604 hasConcept C153180895 @default.
- W2891432604 hasConcept C154945302 @default.
- W2891432604 hasConcept C160633673 @default.
- W2891432604 hasConcept C164226766 @default.
- W2891432604 hasConcept C174576160 @default.
- W2891432604 hasConcept C185798385 @default.
- W2891432604 hasConcept C205649164 @default.
- W2891432604 hasConcept C2777693668 @default.
- W2891432604 hasConcept C30044814 @default.
- W2891432604 hasConcept C33923547 @default.
- W2891432604 hasConcept C41008148 @default.
- W2891432604 hasConcept C74193536 @default.
- W2891432604 hasConcept C81363708 @default.
- W2891432604 hasConcept C9417928 @default.
- W2891432604 hasConcept C99498987 @default.
- W2891432604 hasConceptScore W2891432604C106430172 @default.
- W2891432604 hasConceptScore W2891432604C11413529 @default.
- W2891432604 hasConceptScore W2891432604C114614502 @default.
- W2891432604 hasConceptScore W2891432604C115961682 @default.
- W2891432604 hasConceptScore W2891432604C13280743 @default.
- W2891432604 hasConceptScore W2891432604C153180895 @default.
- W2891432604 hasConceptScore W2891432604C154945302 @default.
- W2891432604 hasConceptScore W2891432604C160633673 @default.
- W2891432604 hasConceptScore W2891432604C164226766 @default.
- W2891432604 hasConceptScore W2891432604C174576160 @default.
- W2891432604 hasConceptScore W2891432604C185798385 @default.
- W2891432604 hasConceptScore W2891432604C205649164 @default.
- W2891432604 hasConceptScore W2891432604C2777693668 @default.
- W2891432604 hasConceptScore W2891432604C30044814 @default.
- W2891432604 hasConceptScore W2891432604C33923547 @default.
- W2891432604 hasConceptScore W2891432604C41008148 @default.