Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891438441> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2891438441 abstract "Many engineering and scientific applications necessitate the estimation of statistics of various functionals on stochastic processes. In Chapter 2, Norros et al’s Girsanov theorem for fBm is reviewed and extended to allow for non-unit volatility. We then prove that using method of images to solve the Fokker-Plank/Kolmogorov equation with a Dirac delta initial condition and a Dirichlet boundary condition to evaluate the first passage density, does not work in the case of fBm.Chapter 3 provides generalisation of both the theorem of Ramer which finds a formula for the Radon-Nikodym derivative of a transformed Gaussian measure and of the Girsanov theorem. A P-measurable derivative of a P-measurable function is defined and then shown to coincide with the stochastic derivative, under certain assumptions, which in turn coincides with the Malliavin derivative when both are defined. In Chapter 4 consistent quasi-invariant stochastic flows are defined. When such a flow transforms a certain functional consistently a simple formula exists for the density of that functional. This is then used to derive the last exit distribution of Brownian motion.In Chapter 5 a link between the probability density function of an approximation of the supremum of fBm with drift and the Generalised Gamma distribution is established. Finally the self-similarity induced on the distributions of the sup and the first passage functionals on fBm with linear drift are shown to imply the existence of transport equations on the family of these densities as the drift varies." @default.
- W2891438441 created "2018-09-27" @default.
- W2891438441 creator A5025965129 @default.
- W2891438441 date "2018-01-01" @default.
- W2891438441 modified "2023-09-27" @default.
- W2891438441 title "Methods for analysis of functionals on Gaussian self similar processes" @default.
- W2891438441 hasPublicationYear "2018" @default.
- W2891438441 type Work @default.
- W2891438441 sameAs 2891438441 @default.
- W2891438441 citedByCount "0" @default.
- W2891438441 crossrefType "dissertation" @default.
- W2891438441 hasAuthorship W2891438441A5025965129 @default.
- W2891438441 hasConcept C104824951 @default.
- W2891438441 hasConcept C105795698 @default.
- W2891438441 hasConcept C112401455 @default.
- W2891438441 hasConcept C121332964 @default.
- W2891438441 hasConcept C134306372 @default.
- W2891438441 hasConcept C163716315 @default.
- W2891438441 hasConcept C197055811 @default.
- W2891438441 hasConcept C28826006 @default.
- W2891438441 hasConcept C33923547 @default.
- W2891438441 hasConcept C51955184 @default.
- W2891438441 hasConcept C54486999 @default.
- W2891438441 hasConcept C62520636 @default.
- W2891438441 hasConcept C78651780 @default.
- W2891438441 hasConcept C95611797 @default.
- W2891438441 hasConceptScore W2891438441C104824951 @default.
- W2891438441 hasConceptScore W2891438441C105795698 @default.
- W2891438441 hasConceptScore W2891438441C112401455 @default.
- W2891438441 hasConceptScore W2891438441C121332964 @default.
- W2891438441 hasConceptScore W2891438441C134306372 @default.
- W2891438441 hasConceptScore W2891438441C163716315 @default.
- W2891438441 hasConceptScore W2891438441C197055811 @default.
- W2891438441 hasConceptScore W2891438441C28826006 @default.
- W2891438441 hasConceptScore W2891438441C33923547 @default.
- W2891438441 hasConceptScore W2891438441C51955184 @default.
- W2891438441 hasConceptScore W2891438441C54486999 @default.
- W2891438441 hasConceptScore W2891438441C62520636 @default.
- W2891438441 hasConceptScore W2891438441C78651780 @default.
- W2891438441 hasConceptScore W2891438441C95611797 @default.
- W2891438441 hasLocation W28914384411 @default.
- W2891438441 hasOpenAccess W2891438441 @default.
- W2891438441 hasPrimaryLocation W28914384411 @default.
- W2891438441 hasRelatedWork W2034453050 @default.
- W2891438441 hasRelatedWork W2125136081 @default.
- W2891438441 hasRelatedWork W2183170709 @default.
- W2891438441 hasRelatedWork W2362516099 @default.
- W2891438441 hasRelatedWork W243858663 @default.
- W2891438441 hasRelatedWork W2726418755 @default.
- W2891438441 hasRelatedWork W2769812467 @default.
- W2891438441 hasRelatedWork W2782394901 @default.
- W2891438441 hasRelatedWork W2793206549 @default.
- W2891438441 hasRelatedWork W2949552611 @default.
- W2891438441 hasRelatedWork W2949710749 @default.
- W2891438441 hasRelatedWork W2963406139 @default.
- W2891438441 hasRelatedWork W2974728551 @default.
- W2891438441 hasRelatedWork W2995762330 @default.
- W2891438441 hasRelatedWork W3029269928 @default.
- W2891438441 hasRelatedWork W3034753181 @default.
- W2891438441 hasRelatedWork W3126025803 @default.
- W2891438441 hasRelatedWork W3180367937 @default.
- W2891438441 hasRelatedWork W3201520028 @default.
- W2891438441 hasRelatedWork W2949846824 @default.
- W2891438441 isParatext "false" @default.
- W2891438441 isRetracted "false" @default.
- W2891438441 magId "2891438441" @default.
- W2891438441 workType "dissertation" @default.