Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891440666> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2891440666 endingPage "140" @default.
- W2891440666 startingPage "140" @default.
- W2891440666 abstract "Abstract Background Both lymphovascular invasion, which is characterized by penetration of tumor cells into the peritumoural vascular or lymphatic network, and perineural invasion, which is characterized by involvement of tumor cells surrounding nerve fibers, are considered as an important step for tumor spreading, and are known poor prognostic factors in esophageal cancer. However, the information of these histological features is unavailable until pathological examination of surgical resected specimens. We aim to predict the presence or absence of these factors by positron emission tomography images during staging workup. Methods The positron emission tomography images before treatment and pathological reports of 278 patients who underwent esophagectomy for squamous cell carcinoma were collected. Stepwise convolutional neural network was constructed to distinguish patient with either lymphovascular invasion or perineural invasion from those without. Results Randomly selected 248 patients were included in the testing set. Stepwise approach was used in training our custom neural network. The performance of fine-tuned neural network was tested in another independent 30 patients. The accuracy rate of predicting the presence or absence of either lymphovascular invasion or perineural invasion was 66.7% (20 of 30 were accurate). Conclusion Using pre-treatment positron emission tomography images alone to predict the presence of absence of poor prognostic histological factors, i.e. lymphovascular invasion or perineural invasion, with deep convolutional neural network is possible. The technique of deep learning may identify patients with poor prognosis and enable personalized medicine in esophageal cancer. Disclosure All authors have declared no conflicts of interest." @default.
- W2891440666 created "2018-09-27" @default.
- W2891440666 creator A5039767681 @default.
- W2891440666 creator A5055464489 @default.
- W2891440666 date "2018-09-01" @default.
- W2891440666 modified "2023-10-16" @default.
- W2891440666 title "PS02.070: DEEP NEURAL NETWORK TO PREDICT POOR PROGNOSTIC FACTORS IN PATIENTS WITH ESOPHAGEAL CANCER" @default.
- W2891440666 doi "https://doi.org/10.1093/dote/doy089.ps02.070" @default.
- W2891440666 hasPublicationYear "2018" @default.
- W2891440666 type Work @default.
- W2891440666 sameAs 2891440666 @default.
- W2891440666 citedByCount "1" @default.
- W2891440666 countsByYear W28914406662022 @default.
- W2891440666 crossrefType "journal-article" @default.
- W2891440666 hasAuthorship W2891440666A5039767681 @default.
- W2891440666 hasAuthorship W2891440666A5055464489 @default.
- W2891440666 hasConcept C121608353 @default.
- W2891440666 hasConcept C126322002 @default.
- W2891440666 hasConcept C126838900 @default.
- W2891440666 hasConcept C141071460 @default.
- W2891440666 hasConcept C142724271 @default.
- W2891440666 hasConcept C143998085 @default.
- W2891440666 hasConcept C207886595 @default.
- W2891440666 hasConcept C2775842073 @default.
- W2891440666 hasConcept C2776256026 @default.
- W2891440666 hasConcept C2777154038 @default.
- W2891440666 hasConcept C2777297899 @default.
- W2891440666 hasConcept C2777819096 @default.
- W2891440666 hasConcept C2778740770 @default.
- W2891440666 hasConcept C2779013556 @default.
- W2891440666 hasConcept C2779742542 @default.
- W2891440666 hasConcept C71924100 @default.
- W2891440666 hasConceptScore W2891440666C121608353 @default.
- W2891440666 hasConceptScore W2891440666C126322002 @default.
- W2891440666 hasConceptScore W2891440666C126838900 @default.
- W2891440666 hasConceptScore W2891440666C141071460 @default.
- W2891440666 hasConceptScore W2891440666C142724271 @default.
- W2891440666 hasConceptScore W2891440666C143998085 @default.
- W2891440666 hasConceptScore W2891440666C207886595 @default.
- W2891440666 hasConceptScore W2891440666C2775842073 @default.
- W2891440666 hasConceptScore W2891440666C2776256026 @default.
- W2891440666 hasConceptScore W2891440666C2777154038 @default.
- W2891440666 hasConceptScore W2891440666C2777297899 @default.
- W2891440666 hasConceptScore W2891440666C2777819096 @default.
- W2891440666 hasConceptScore W2891440666C2778740770 @default.
- W2891440666 hasConceptScore W2891440666C2779013556 @default.
- W2891440666 hasConceptScore W2891440666C2779742542 @default.
- W2891440666 hasConceptScore W2891440666C71924100 @default.
- W2891440666 hasIssue "Supplement_1" @default.
- W2891440666 hasLocation W28914406661 @default.
- W2891440666 hasOpenAccess W2891440666 @default.
- W2891440666 hasPrimaryLocation W28914406661 @default.
- W2891440666 hasRelatedWork W171727350 @default.
- W2891440666 hasRelatedWork W2000549626 @default.
- W2891440666 hasRelatedWork W2054375708 @default.
- W2891440666 hasRelatedWork W2153769399 @default.
- W2891440666 hasRelatedWork W2417932425 @default.
- W2891440666 hasRelatedWork W2891440666 @default.
- W2891440666 hasRelatedWork W3094073448 @default.
- W2891440666 hasRelatedWork W3109878651 @default.
- W2891440666 hasRelatedWork W4200488637 @default.
- W2891440666 hasRelatedWork W4226080607 @default.
- W2891440666 hasVolume "31" @default.
- W2891440666 isParatext "false" @default.
- W2891440666 isRetracted "false" @default.
- W2891440666 magId "2891440666" @default.
- W2891440666 workType "article" @default.